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The motions seen in numerical models of ocean circulation typically include
rapidly moving external gravity waves, which are essentially two-dimensional, and
a variety of other motions which are much slower and generally three-dimensional.
In a number of ocean models, the computational problems resulting from the mul-
tiple time scales are addressed by splitting the fast and slow dynamics into separate
subproblems that are solved by different techniques. The present paper addresses the
practical implementation of such a splitting for the case of isopycnic ocean mod-
eling, in which the vertical coordinate is density or some other related quantity.
During the implementation, a major task is to develop formulas suitable for usage
with rapidly varying bottom topography. Compared to an earlier splitting, the present
splitting has improved stability properties when analyzed in a simple linearized set-
ting. When tested in the same model for which the earlier splitting was developed,
the revised splitting substantially reduces a numerically induced sloshing pattern that
is seen in the model. This phenomenon appears to be related to a residual term that
appears in the momentum equations. In some examples, the residual is one to two
orders of magnitude smaller in the case of the revised splitting1999 Academic Press

Key Wordsocean circulation; numerical solution of partial differential equations;
stability analysis; time discretization; barotropic-baroclinic time splitting.

1. INTRODUCTION

Numerical models of ocean circulation typically admit motions varying on a wide rai
oftime scales. The motions include rapidly moving external gravity waves, whose dyna
are similar to those found in the two-dimensional shallow-water equations that describ
motions of a hydrostatic fluid of constant density. The remaining motions, such as cur
and interval gravity waves, have velocities that can be at least two orders of magn
smaller. In order to deal with the computational difficulties imposed by the disparity
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time scales, several ocean circulation models (e.g., [1, 3, 10, 14]) model the fast moti
with a two-dimensional barotropic system of equations and the remaining slow motic
with a three-dimensional baroclinic system. The baroclinic system is solved explicitly wi
a long time step that is appropriate for resolving the slow motions, while the barotro
system is solved by separate techniques. A more extensive literature survey is give
the introduction to [7]. The present paper addresses the splitting process in the conte
isopycnal coordinates, for which the vertical coordinate is density or some other rela
quantity. In this type of model, a vertical discretization divides the fluid into layers that a
approximately immiscible, so water masses are tracked automatically due to the choic
coordinate system. Other advantages of isopycnal coordinates are discussed in [1, 7].

Perhaps the first barotropic—baroclinic splitting for isopycnal models was the one dey
oped by Bleck and Smith [1]. Higdon and Bennett [7] analyzed this splitting for the case
a simple linearized model having a level bottom and two fluid layers, and they found tl
the method in [1] can yield unstable computational algorithms due to inexactness in
splitting. The equations that model the slow motions actually admit some energy mov
on the fast scale, so the Courant—Friedrichs—Lewy condition is violated for those equati
Sources of inexactness include the decompositions of the velocity and pressure fields
the derivation of the barotropic momentum equation. The latter is a prognostic equalt
for the vertical average of the horizontal velocity, and in this equation the pressure-forc
term is equivalent to the one from the shallow water equations. Higdon and de Szoeke
subsequently found that the pressure term is the main source of instability. In an isopy
model, the horizontal pressure forcing is provided by the gradient of the Montgomery |
tentialM = ap + gz If the pressure term in the barotropic system in [1] is replaced by tf
vertical average oV M, then the instability is essentially eliminated in the linearized sef
ting analyzed in [7, 8]. Additional improvements are given by some time stepping scher
developed by Hallberg [5]. Essentially, in the splitting developed in [1], the barotropic m
mentum equation neglects the variations in density over the depth of the fluid, whereas
splitting in [8] incorporates the vertical structure more explicitly.

The present paper extends the preceding work, as follows. One goal is to develc
method for implementing the splitting of [8] in a nonlinear isopycnic model with strong|
varying bottom topography. A second goal is to test this method when applied to the Mie
Isopycnic Coordinate Ocean Model (MICOM) [1, 2], which is the model for which th
splitting in [1] was originally developed.

When pursuing the first goal, a particular concern is developing a suitable represents
of VM, the vertical average &f M. Two methods for representing this average are discu:
sedin Section 3. In one approach, which is termed a bottom—up method, one first deterr
My, the Montgomery potential in the bottom layer. One then represeéisn all other
layers in terms oV My, prior to the vertical averaging. However, at locations where laye
interfaces intersect the bottom of the fluid domain, representationdvbibased on this
approach can include terms that contain discontinuities that are not already intrinsic to
problem. This point is discussed in Section 3.1.1. These discontinuities act as source
velocity convergence which can generate spurious gravity waves in the computed solut
In some numerical experiments using such an approach, erratic behavior appeared qui
followed by an ultimate blowup that apparently resulted from nonlinear interactions
the system. An alternate approach, which is termed a top—down method, is develope
Sections 3.1.2 and 3.2. With this method the idea is to reprddenthe Montgomery
potential in the top layer, in terms of changes in layer thicknesses and then représent
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in all other layers in terms o¥ M;. The quantityV M, is continuous as long as the free
surface is smooth, and with this approach the final representati@hofloes not contain
discontinuous terms of the type encountered with the bottom—up approach.

In the following discussions of splittings, the term “original splitting” will refer to the
splitting developed by Bleck and Smith [1], and the term “revised splitting” will refer 1
the splitting developed by Higdon and de Szoeke [8]. In the context of a nonlinear mc
with varying bottom topography, the revised splitting is implemented using the top—dc
method mentioned above, as opposed to the bottom—up method. However, in the discL
of linearized stability given in Section 2.3, this distinction isimmaterial, due to the simplic
ofthe case considered there. The concept of top—down versus bottom—up also does not
to the original splitting in [1], as it does not employ a vertical average of the Montgom
gradient.

The above splittings were compared in numerical computations involving a regic
configuration of MICOM. The spatial resolution used in these particular tests is adeq
for showing some of the main features of oceanic circulation, butitis not fine enough to
high resolution of boundary currents or to resolve the eddies that are shed from curren
these experiments, the revised and original splittings produced similar results, in the <
that snapshots of various flow fields yielded results that are similar, although not ident
However, the original splitting produced a substantial sloshing pattern that appears to
numerical artifact, instead of a realistic physical phenomenon. The sloshing can be se
the net lateral transport of fluid and in the depth-dependent circulation. The sloshing
reduced substantially when the revised splitting was used. It was initially anticipated tha
improved stability of the revised splitting would make it possible to run the model with le
time smoothing than with the original splitting. Time smoothing was originally introduc
into that model in order to suppress the computational mode that is allowed by the leay
scheme that is used to solve the baroclinic equations. However, the effect of this mol
sufficiently strong for reasons related to the implementation of the mixed layer that it
not appear possible to run the revised splitting with substantially reduced smoothing ir
present series of tests.

An outline of the paper is the following. Section 2 sketches the revised and origi
splittings, and Section 3 describes a method for implementing the revised splitting.
results of the numerical experiments are described in Section 4. A summary and s
conclusions are given in Section 5.

2. OUTLINE OF THE SPLITTINGS

This section describes the revised splitting that will be implemented and tested in |
sections. An outline of the earlier splitting of Bleck and Smith [1] is also given here.

2.1. Summary of the Splitting Process

The following discussion is based on the primitive equations as applied to a vertic
discrete, layered model. Assume that the fluid consistR tzyers with constant specific
volumesy;, . . ., ag, With index 1 referring to the uppermost layer and indxeferring
to the bottom layer. (The specific volume is the reciprocal of density.)pL€t, vy, t) de-
note the pressure at the top of layerthe pressure at the free surface is assumed to
p1 = 0. The elevation and pressure at the bottom of the fluid will be denoteg kyy) and
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Po(X, ¥, 1) = pry1(X, Y, t), respectively. LeAp, = pr+1 — pr denote the pressure differ-
ence across layer and letAo; = oy — 41 denote the increment i across the interface
at the bottom of layer. Let M, (X, y, t) =0, p+ gz denote the Montgomery potential
in layerr; a calculation involving the hydrostatic conditi@p/9z= —a~'g shows that
M is independent of depth in a layer for whiehis independent of depth. Finally, let
ur (X, y,t) = (ur, vr) denote the horizontal velocity in layer A simplified version of the
primitive equations in then

0
% + WU - VU + fk xu = -VM, (2.1a)
Mr = Mr+1 + pr+1Aar (21b)
JdA
8tp’ + V- (U Ap)=0. (2.1¢)

(Also see [1, 7].) Herey = (9/9x%, 3/3y), and fk x u, denotes the Coriolis terms-(f vy,
fuy).

The jump condition (2.1b) can be derived by observing that in the quavtityoep + gz,
«a is discontinuous at an interface, wherg@amdz are continuous. Equation (2.1c) describes
the conservation of mass,@s' A p; is the mass per unit horizontal area in layeh realistic
ocean model would also incorporate physical effects such as thermodynamics, visco
surface forcing, and mixing between layers, but the system (2.1) is sufficient for illustrati
the essential ideas behind a barotropic—baroclinic time splitting.

For the momentum equation in the barotropic system, we use a vertical average of (2.
Define a mass-weighted, vertically averaged velocity by

R Ap,
uex, y,t) = Z Ur. (2.2)
r=1 Po

The quantityg ! pyu is the net rate of horizontal mass transport, and for a linearized proble
the formula (2.2) approximates the projection of the velocity field onto the external mo
[7]. The vertical average of (2.1a) can be written in the form

ou _ _

ﬁ+kau=—VM+G, (2.3)
whereVM is defined in analogy to (2.2). The residual te@1x, y, t) represents the net
effect of those quantities whose vertical averages are not represented explicitly in (2.3
the present simplified cas@, consists of the vertical average of the nonlinear terms and
term involving the time derivatives of the weight coefficientp; / pp. In a realistic ocean
model,G would also include such quantities as stress and viscosity. The implementatiol
G is discussed below.

A baroclinic momentum equation can be obtained by subtracting (2.3) from (2.1a)
obtain a prognostic equation for the baroclinic veloaity=u; —u. A comparison with
(2.2) shows thati’ has mass-weighted vertical average zero.

For a decomposition of the pressure field, we use a splitting that was introduced
Bleck and Smith [1]. Lefp (x, y) denote the pressure at the bottom of the fluid when th
system is in some reference state, such as an initial state or static state. Kar any
let n(x, y, t) denote the relative perturbation in bottom pressure from that state, so t
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Po(X, Yy, t) = (1+n)p,. For the sake of usage in Section 3.1, also assime- gz is
constant in the reference state. Given the pressure fiigidd the preceding definition of
n, define a depth-dependent quantiyso thatp= (1 + n)p’ throughout the fluid. The
pressure increments across each layer then satisfy

Apr (X, Y, 1) = (L4 n(X, Yy, D)AP (X, Y, ). (2.4)

The quantityn is intended to represent the effects of external gravity waves,parnsi
expected to vary only on a slow time scale. Typicélly< 1. The decomposition (2.4) then
induces a splitting of the mass equation (2.1c); see [1] or [7].

The decomposition (2.4) is based on the idea that an external wave causes all fluid |
to thicken or thin by approximately the same proportion. Such a statement is not e
The decompositiom;, = u; + u of the velocity field is also inexact, to a similar degree
However, the analysis of Higdon and de Szoeke [8] indicates that these errors do not
a significant impact on the stability of the coupled barotropic—baroclinic algorithm.

The barotropic momentum equation of Bleck and Smith [1] has the form

ou _
m + fk x U= —agV(pyn) + G*, (2.5)

where g is a reference value of specific volume. In [1], the residual term is deno
by uf instead ofG*. The quantitypy is the perturbation in bottom pressure from the
reference state. For the case of a hydrostatic fluid of constant depgityis also the
pressure perturbation induced by changes in the elevation of the free surface. The
—aoV(ppn) is thus equivalent to the pressure forcing that appears in the shallow w:
equations for a hydrostatic fluid of constant densityl

With the barotropic momentum equations (2.3) and (2.5), the residual @rams G*
can be implemented as follows. (Also see [1, 8].) Suppose that the solution is to be adva
fromtimet, totimet,, 1 =t, + At, whereAt is the (long) baroclinic timestep. First, advance
the baroclinic momentum equation with the residual term deleted. The conditian test
vertical mean zero is then used to adjusand obtain the residual. The comput&dor
G*) is transferred to the barotropic momentum equation, where it serves as a forcing
when the barotropic equations are solved on the time intetyah[1]. In [1] and in the
computations described in Section 4, the barotropic equations are solved explicitly
short substeps. In this computation, the t&nfor G*) can vary with(x, y) but is treated
as constant i for t, <t <tpy;.

Inthe barotropic momentum equation (2.5), the pressure forcing term neglects the vel
variations of density within the fluid, whereas the alternative equation (2.3) incorpor:
the vertical structure explicitly. In the case of (2.3), the residual @®rmepresents the net
effect of various quantities discussed earlier. In the case of (2.5), the residual term con
these effects, plus the difference betwegR (p,n) and VM. An explicit representation
of the latter is developed in Section 3.1, and from that representation it can be seer
aoV(pyn) — VM includes terms varying on the fast barotropic time scale. UsiWgv in
place of—aoV(p,n) has the effect of pulling this difference out of the residual and treatir
it with an explicit formula. In some computational examples discussed in Section 4,
step reduces the size of the residual by one to two orders of magnitude.
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2.2. Stability

The effect of replacing-aoV(p,n) with —VM can also be seen in a linear stability
analysis. Higdon and Bennett [7] analyzed the stability of the splitting of Bleck and Smith |
for the special case of a linearized system with one horizontal dimension, two layers,
flat bottom topography. Higdon and de Szoeke [8] subsequently analyzed the stabilit
the revised splitting in the same setting and also for the case of two horizontal dimensi
In [7] the parametety was taken to be the value afin the lower layer, as this choice
simplified some formulas in the analysis. However, in the current version of MICOM, whi
is discussed in Section 4, the valuedgfis chosen to be 1 cify for convenience. This
value is greater than all of the valuescothat are used in the layers in that model. Becaus
of the discrepancy between the analysis and the model, we briefly revisit the analysis
test the dependence of stability on the value@f

Inthe analysisin[7, 8], itis assumed that the system is discretized with respect to spac
using second-order centered finite differences on a staggered grid. The barotropic equa
are solved exactly with respectttin order that time discretization errors for those equation
do not mask the effects of the splitting or the baroclinic timestepping. In order to analy
stability, we perform a Fourier transform with respecktand examine the evolution of the
system through time. Equivalently, consider special solutions of the f8et¥q, wherex
is a complex scalan is the time indexk is a real wavenumber, amds a vector. In general,

A andqg depend ork. Because of periodicity, one can assume < KAX < 7, whereAx is
the space step. An algorithm would be stable if, for each wavenumlper,1 for all A and

if inear independence enables all solutions to be written as linear combinations of soluti
of the forma"ek*q.

For the sake of brevity, we do not give the details of the analysis, but instead show p|
of |A| versuskAx for a sample set of model parameters. For these plots it is assumed t
(a1 — a2)/ap = 0.004, wherex; anda, are the specific volumes of the upper and lowel
layers, respectively. It is also assumed that the pressure difference across the upper la
one-quarter the bottom pressure. The baroclinic timeAtdp chosen so that the baroclinic
Courant number i€; At/Ax = 0.4, wherec; is the internal wave speed. The leap frog
method is used to discretize the baroclinic equations with respecfAgshown in [8], the
calculation ofs can be reduced to an eigenvalue problem having six nonzero eigenvalu

In Fig. 1, the upper graph shows a plot|af versuskAx for the splitting of Bleck and
Smith, withag = a,. For this plot, values dkAx were sampled in increments o§2000.
The absolute values of all eigenvalues are shown in the plot, so multiple curves are pre:
For mostk there exists. for which|A| > 1, so the method is unstable in the present setting

The lower frame in Fig. 1 shows plots pf| for the caseyg = a1, which is the value of
a in the upper layer. The instability remains, although the maximum valig & slightly
smaller. One difference with the preceding case is that there is a stronger prevalenc
modes for which|A| < 1; for those particular modes, the algorithm is dissipative. Som
additional plots, not shown here, indicate that this pattern persistg &sincreased to
values greater than those actually found in the fluidaféncreases, the maximum value
of |A| decreases gradually but remains greater than 1. The minimum values drop fur
below 1, which indicates greater dissipation in some modes.

Figure 2 shows a plot d| for the revised splitting. The model parameters are the san
asinFig. 1. In the calculation leading to this plot, the baroclinic quantities appeanfigin
are interpolated linearly with respectttbetween consecutive baroclinic time levels. With
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FIG.1. Plotsof|r|versukAx for the original splitting developed in [1]. In this splitting, the pressure gradier
term—ao V(p;n) is used in the barotropic momentum equation. The present analysis considers a linearized s)
with two fluid layers and one horizontal dimension. In the top frame, it is assumedtisa¢qual to the value of
« in the lower layer; for the bottom framey is the value ofx in the upper layer. Model parameters are specifiet
in the text.

the revised splitting, the eigenvalues have absolute value exactly equal to 1, except for
spikes defined on some extremely narrow intervals. The spikes can be eliminated by us
time stepping scheme of Hallberg [5], which employs a prediction step and a correction
for both the barotropic and baroclinic equations. In computational experiments, it has

Revised splitting
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FIG. 2. Plot of |A| versuskAXx for the revised splitting implemented in the present paper. In this case, t
pressure forcing term in the barotropic momentum equatierM.
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been evident that the spikes have a significant effect on the computation, given the eff
of viscosity and other factors that are present in an ocean circulation model.

3. IMPLEMENTATION OF THE REVISED SPLITTING

In this section we describe some aspects of implementing the splitting of [8] in a nc
linear model with variable bottom topography. One of the main steps is to eXpidss
terms of the prognostic variables in the system.

3.1. Representation oV M in the Horizontally Continuous Case

The basic approach taken here is to represéntthe Montgomery potential in the top
layer, in terms of changes in layer thicknesses. The interface condition (2.1b) then yie
M in all other layers, and a representation Yol can be obtained.

In the following discussion, it is assumed that all fluid layers exist at all horizont
positions in the ocean. However, the interfaces between layers may intersect the botto
top boundaries of the fluid, so some of the layers can have (essentially) zero thicknes
some regions. This technique of massless layers is used, for example, byeBidk, 2]
and Oberhuber [12] inisopychic ocean models and by Hsu and Arakawa [9] in an isentrc
model of the atmosphere.

3.1.1. Some difficulties related M. Before giving the derivation o¥ M sketched
above, it would be useful to discuss another approach that in some respects might ¢
more natural. At the bottom of the fluid, the Montgomery potential satisfies the bound:
conditionMy, = ap pp + g2, Which is easily evaluated once the layer thicknesses are know
The interface condition can then be used to relltia all other layers tdvl,. A correspond-
ing representation o¥ M would then involveV My,. The calculation of the latter can be
facilitated by using the pressure splittipg= (1+7) p’ to obtainV My, = VM, + V (as p;n),
whereM{ = oy, p;, + 9z, denotes the Montgomery potential in the bottom layer at the refe
ence state that is used to define the pressure splitting. The quaypjfy is several orders
of magnitude smaller thawy, py,, SO separating this term from the remaindeMgfcan yield
amore accurate calculation of the effect of its gradient. In additdvi,, is independent of
time and need not be updated during the computation.

The preceding approach was used to obtain the representaitv gfiven in Eq. (2.12)
of Higdon and de Szoeke [8]. This representation was adequate for the numerical con
tations described in that paper, which assumed level bottom topography. However, in |
computations involving highly irregular bottom topography, this representation produc
erratic behavior and an ultimate blowup. Following are some observations that may hel
explain the irregular behavior and motivate the alternate approa¢Mtthat is developed
in the present paper.

For the moment, consider a two-layer fluid bounded below by topography that var
linearly and suppose that the reference state is a stationary state for which the free su
and fluid interface are level. Also assume that the free surface is locared @tAt this
state, the Montgomery potential in the upper layeMis= o1 p; + 9zop= gzop=0, and
the Montgomery potential in the lower layer i), = M; — p,Aa = —p5Ac. In a region
where the lower layer has positive thickneps,is constant, and@ M|, =0. On the other
hand, in a region where the lower layer has zero thickngssaries linearly, and/ M is
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a nonzero constant. The quant®M;, then has a jump discontinuity at any point wher
the interface intersects the bottom topography. A similar analysis shows that analo
conclusions can be reached for a multilayered fluid at any point where a smooth inter
intersects bottom topography at a nontangential angle. This situation is a consequer
using massless layers at the bottom of the fluid.

However,V M is itself continuous, assuming that the free surface and bottom topogra
are described by continuously differentiable functions and that the top of each laye
continuously differentiable on any region where the layer has positive thickness. To
this, observe that these hypotheses, together with the reldtieng zo, — erzz pj Acj_1,
imply thatV M, is continuous in layer, except perhaps for jump discontinuities at location
where the top of layarintersects the bottom topography. However, in the definitioviidf
the quantityv M, is multiplied by the weighting coefficiemt p; / p, = Ap; / pj,, Which tends
to zero at intersection points. The product of these quantities is continuous. The qua
VM is thus continuous, although it could have discontinuous first derivatives.

Now suppose that one is using a representatio’W ®f in which VM| appears as a
separate term. Taken in isolation, this term would act as a forcing term on the barotr
flow, and the discontinuities in this forcing would provide localized sources of veloc
convergence which could generate spurious gravity waves in the solution. However, <
VM is continuous, the discontinuities WWM{, must be cancelled by jumps of opposite sig|
appearing in the remaining termswM, and the spurious wave are not actually generate
This observation depends on an exact cancellation of discontinuities appearing in diffe
terms. If these terms are then approximated by finite differences, this cancellation ma
necessarily occur. This appears to be the source of the erratic behavior in some numeric
periments involving some implementations of the representatidbterived in [8]. The
ultimate blowup may have been due to nonlinear interactions involving the spurious wa

In the preceding discussion, it was assumed that the top of each layer is smooth ol
region where the layer has positive thickness. However, the top of a layer is not smoott
location where it intersects the free surface at a nontangential angle. In that case, an an
similar to the above shows th&M could be discontinuous. However, this situation ha
not caused noticeable difficulties in numerical experiments. In this case, the discontir
in VM appears to be a dynamic configuration to which the system can adjust. For exan
consider a two-layer fluid having a level free surface-at0, and assume that the thicknes:
of the upper layer is zero for < X and proportional to — xg for X > Xg. In this case,
M; =M, =VM =0 for x < Xo. On the other hand, ik > X, thenM; =0, dM,/3x <0,
and thex-component of—-VM is positive. Since-VM provides forcing todu/at, the
discontinuity in—VM provides a source of barotropic fluid divergencexat xo. More
generally, if the intersection of the interface with the free surface is smoothed sligt
then—V M undergoes a rapid transition neat Xo, and again a source of barotropic fluid
divergence is obtained. Such a source induces a drop in the free surface elevation \
serves to moderate the divergence; in this sense, the system adjusts to the Julhp@mn
the other hand, a discontinuity MM, represents a static forcing that acts forever, and
the experiments cited above the system appeared unable to adjust to this kind of forci
a reasonable manner.

It should be noted that there are practical limitations to how smod@Ny can vary
when the system is discretized in the horizontal in the presence of strongly varying bo
topography. In that case, at a fixed time, there can be different numbers of nonzero I
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at different grid points, and the bottom topography can then be visualized as a stair:
pattern. For example, in the model configuration used in Section 4, the number of non:
layers can jump by several units between adjacent grid points, as illustrated in Fig. 3
such situationsy M could contain a jump when the number of nonzero layers change
due to a change in the number and character of the terms being averaged. For exat
consider a two-layer model that admits one nonzero layer at all grid points for whicty
and two nonzero layers at all points where- xg. Suppose that the fluid has a level free
surface az =0, the interface between layers varies linearlyxor xg, and the thickness
of the lower layer approaches a positive valuexas xg . In this caseM; =0 for all x,
and M, varies linearly forx > Xo. It follows thatVM is zero forx < Xo but has nonzero
values immediately to the right of. More generally, a jump iVM is possible if there
aren; nonzero layers fox < xo andn; nonzero layers fox > Xq, with n, — n; > 1; if, for
some configuration of the systeWiM does not have a jump, then another configuratior
with a jump can be constructed by varying the shapes of the tops of layers, ..., n,

for x slightly greater tharx,. The precise behavior M at x = X, would depend on the
structure of the grid and the method of discretizWlyl. In any case, abrupt variations of
VM are possible in neighborhoods of points where the number of nonzero layers chan
This situation appears intrinsic to the problem and not an artifact of any particular form:
for VM.

With the formulation ofV M that is discussed above and used in [8], one would have
balance carefully the discretization of different terms in order to avoid jumps that are gre:
than those that are intrinsic to the problem. On the other hand, the difficulty invoiiihg
is related to the massless layers at the bottom of the fluid, and an alternative is to aba
the use of such layers. However, this would entail difficulties related to tracking the movi
boundaries of nonzero layers.

The approach taken inthe present paper is to sidestep these difficulties by formulsiting
differently. Essentially, the preceding method is a bottom—up approach which relates
Montgomery potential in each layer to the Montgomery potential in the lowest layer. Inste
we use here a top—down approach that begins with a representation of the Montgon
potential in the top layer.

3.1.2. AformulafovM. The Montgomery potential in the top layerig; (x, y, t) =
0zop(X, ¥, 1), wherezy, is the perturbation in the elevation of the free surface relative to tf
mean elevatiom = 0. Let Az (X, y, t) denote the thickness of layerand letAz re:(X, Y)
denote the thickness of layerwhen the system is at the reference state used to defi
the pressure splitting= (1 4+ n) p’. In Section 2.1 it was assumed that, in this state, th
free surface is level. It follows thafl; =g ZrR:l(Az, — Az o). The hydrostatic condition
9p/dz=—a g then yields

R
M, = Zar(Apr - Ap;,ref)’
r=1

where Ap; (X, y) denotes the pressure difference across layat the reference state.
Now insert the pressure decomposition (2.4) to obtain

R
Mi(X, Y. t) = appn+ Y o (AP, = AP, e (3.1a)
r=1
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where

R Ap,
a(x,y,t) = Zo{r p/f (3.1b)
b

r=1
denotes the mass-weighted vertical average. dh (3.1a), the quantityyn varies on the
fast time scale, and the other quantities vary on the slow time scale. The summatic
(3.1a) represents some effects of internal waves; the terms in this sum cancel partially
to varying signs in the vertical direction.
The Montgomery potential in an arbitrary layecan then be written

Mr = M1 — p2Aag — -+ — PrAor g
=M1 — Q2+ N,

whereN; =0 and Ny = pyAay + -+ + p{Aor_q for r > 1. The quantityN resembles
Montgomery potential, except that it increases downward with increments of the fc
p’Awx. The vertical average 6f M is then

R

_ Ap;

VM = E o VM,
r=1 &b

R
Ap, N
=VM - ) ?'V[p{)(l+n)—,r} (3.2)
Pb Po

r=1

where VM; is calculated from (3.1). The quantity, /p;, has units ofe and satisfies
0< N;/p, < Aa, whereAa =y — ar denotes the variation ia over the total depth of
the fluid. The quantityp;, (1 + 1) is equal to the total bottom pressuss.

The barotropic momentum equation of Bleck and Smith [1] uses the gradient t
—aoV(pyn), Whereag is a reference value of. A comparison with (3.1) and (3.2) shows
that the difference betweenaoV (p,n) and—VM consists of the gradient of the summa
tion term in (3.1a) plus terms of ordevw. This difference includes terms that vary on the
fast barotropic time scale.

3.2. Representation oM in the Horizontally Discrete Case

For definiteness, assume that the horizontal discretization of the governing equatic
based on the C-grid of Arakawa [6, 11]. This discretization is used in the model teste
Section 4. The quantitie®l, p, n, andN are defined at “mass points” in the centers c
grid cells, and the values of normal components of velocity are defined at the cente
edges of grid cells. Laet andv denote the components of velocity with respeck tand
y, respectively. If the center of a grid cell is located with integer indi{cep), then denote
theu-points associated with that cell with indicg@s j) and(i + 1, j). Similarly, denote the
v-points with indicedi, j) and(, j +1).

The following discussion considers centered differenceMofwith respect tox that
are taken to be approximations &M, /9x at u-points. A similar discussion applies to
differences with respect tp that represent values atpoints.

When computing vertical averages of discretizations I /09X, it is necessary to use
weight coefficientsAp; / p;, evaluated ati-points. For a fixed value of time, létp/ (u, i, j)
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denote an approximation tp, at theu-point with indices(i, j). The calculation of this
quantity is discussed in Section 3.3. The quantityu, i, j)=Z,R:1Ap;(u, i,])Iis an
approximation top;, at u-point (i, j), and the weight coefficienhp] (u, i, j)/py(u,i, j)
can be used when calculating vertical averages at that point. However, such coefficient
not used when calculatingin the expression (3.1) fdvl;. All of the quantities in (3.1) are
located at mass points, and in the calculatior aft mass pointi, j) it suffices to use the
values ofAp; and p;, that are already defined at that point.

In analogy to (3.2), a discretization of tkecomponent oV M is given by

(VM)X'\’ AX
ROAp i, ) [ Po DR D) = pel =L DG = 1)
il ACH NP AX
_ Ml(|7l)_Ml(| _1’]) _ A(u7|vJ)pb(|’J)_B(u7|’l)pb(| _151) (33)
- AX AX ' .
where
R .. ..
. App(u,i, J) Ne @i, )
A, i, j) = — —
WD ; Po(u. i, ) Py )
(3.4)

R .. i .
Loy Ap;(UJaJ)Nr('_l»J)
B(u"’”_; Ph(u, i, ) pp =1, )

My is given by the expression in (3.1), apd= p;(1+ n). The quantitiesA(u, i, j) and
B(u, i, j) vary on the slow time scale, arm varies on the fast time scale.

If the barotropic equations are solved explicitly by using short substeps of a barocli
time interval [y, th1], then the quantities iV M that vary on the slow time scale can be
interpolated int between times, andt,, ;. The barotropic quantities are updated at eacl
short timestep.

3.3. Weighting Coefficients

The calculation oV M requires values of the weighting coefficietg; / p;, at velocity
points. However, these coefficients are naturally defined at mass points, so an interpolz
between mass points is required. During this interpolation, a problem that must be avoi
is the creation of false pressure gradients in regions of varying bottom topography.
an example of this situation, suppose that the system is at a static state characterize
a horizontal free surface, horizontal interfaces between layets), and zero forcing.
Consider ai-point with indiced(i, j), and letp/ (i, j) andp/ (i —1, j) denote the baroclinic
pressures at the top of layeat the adjacent mass points. Also suppose that the top of lay
r rests on the sea floor at mass pg@int 1, j) but not at mass poirit, j), and the top of that
layer is higher at mass poiit— 1, j) than it is at mass poind, j). This situation would
occur if the top of layer intersects bottom topography between these mass points, and la
r is then continued with zero layer thickness for decreasifigne interface condition (2.1b),
together withM; =0, then impliesM, (i —1, j) > M (i, j). If the weighting coefficient
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Ap;(u,i, j)/pp(u,i, j)isnonzero, then the vertical average of the disciéigdx contains
a nonzero contribution from layer Since this vertical average provides forcingutoit
is possible that the system will start moving, even though it should remain station
The scheme for calculating weighting coefficients must therefore vigidu, i, j)=0
in this situation. A simple average @fp/ (i — 1, j) and Ap; (i, j) would not have this
property.

Some weighting coefficients are computed in MICOM in order to calculate verti
averages of velocities. These coefficients satisfy the requirements stated above, s
weighting strategy is given here as an example. Let

4 i i ! (i ; ;o r( =1 )+ pd, ]
pr(U,I,J)=m|n<pb(|_1’])’ pb(laj), pr( J; pr( J)>
This quantity provides an approximation to the interface pressure ai-giant (i, j).
Then let

Ap;(u’h J) = p|{+]_(u»|s J) - p[{(usla J)

to obtain a pressure increment across layéihe bottom pressure is then given by

R
PoU i, ) =D Ap/(u,i, j) =min(pyl — 1, j), py(i, ).

r=1

In regions that are located away from the bottom of the flaig; (u, i, j) is simply the
average oAp/ (i, j) andAp] (i —1, j). However, in the situation described in the precedin
paragraphpr(u,i, j) =p,(i — 1, j) andpr;(u.i, ) = pu(i — 1, j), soApi(u,i, j)=0
as desired. A comparison with (3.4) and (3.5) shows st = 0 for this case, so false
pressure gradients are avoided.

3.4. Other Issues of Implementation

The following are some other aspects of implementing the splitting that is teste
Section 4. These issues are mostly specific to MICOM, although some of the motivat
for time smoothing apply more generally.

3.4.1. Pressure forcing in the upper layein MICOM the uppermost layer repre-
sents the mixed layer. In the physical ocean the mixed layer is vertically homogene
due to mixing caused by wind forcing and thermal convection. In the model, the d
sity of the uppermost layer is independent of depth but can vary itly, t). Because
of this fact, the horizontal pressure forcing in layer IViM; — pVay, instead ofV M;.
To derive this result, observe that the hydrostatic conditiprdz = —a g, together with
the assumption of zero atmospheric pressure, implies that the pressure in layer
p(Xx, Y, z,t):a{l(x, Y, 1)9(Ziop(X, Y, 1) —z):a{l(Ml — g2). The horizontal pressure
forcing termis thery; Vp=VM; — a[l(Ml —g2Va; =VM; — pVas.

Inthe computations described in Section 4, this quantity is approximatédhy- p’'Va,
for convenience. The quantity varies with depth, so an intermediate value must be chos
when implementing this term. In addition, valuespifare needed at velocity points, so
an interpolation between adjacent mass points is heeded. These steps are accomplis
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using half an harmonic mean. For example, in the approximatiomMg/ox — p'da1/9X
atu-point(, j), the value ofp’ is taken to b, (i — 1, j)p5o(@, j)/(P5G( —1, j) + p5o(, J)).
Here,p,(i — 1, j) and p(i, j) are the baroclinic pressures at the bottom of layer 1 at th
mass points adjacent tepoint (i, j).

Strictly speaking, the above issues should also be taken into account when construt
the vertically averaged barotropic momentum equation. That I, should be replaced
by VM — (Ap}/py) P'Vai. However, in some numerical experiments this modificatior
did not appear to produce significant changes in the computed results. For the sak
simplicity, —V M is used as the forcing term for the barotropic momentum equation in tl
computations described in Section 4. The forcing for the baroclinic momentum equati
is thus—(VM; — p'Vay — VM) for layer 1 and—(VM, — VM) for all other layers.

3.4.2. Time smoothing.In general, a smoothing operation may be needed when impl
menting the barotropic—baroclinic splitting described above. As noted earlier, in a disct
modelVM can contain jumps due to abrupt changes in the number of nonzero layers c
which the average is taken, and these jumps could generate spurious gravity waves.
would like to suppress such waves, and some time smoothing can accomplish this. It sh
also be noted that the idea of a barotropic—baroclinic splitting is based on the decomp
tion of the solution into external and internal modes. Strictly speaking, this decomposit
applies to linearized models with level bottom topography for which analytical solutio
can be constructed by the method of separation of variables. (See [7].) However, in &
alistic ocean model a barotropic—baroclinic splitting is fundamentally inexact. This lea
the possibility of erratic behavior that would need to be removed from the computation

In MICOM, there is an additional reason for time smoothing that is independent of t
issues discussed elsewhere in this paper. The baroclinic equations are presently s
with the leapfrog time stepping scheme, which admits a computational mode consistin
grid-scale oscillations with respect to time. In addition, the treatment of the mixed layer
this model allows for sudden detrainment of large amounts of water from the mixed la)
into the interior layers. This detrainment provides an impulsive force that can stimulate
computational mode. If left unchecked, these oscillations can ultimately cause a failur
the computation, so they need to be removed by a filtering device.

In standard MICOM, this filter has the forri" =0.125f "~ 4+ 0.75f" + 0.125f "1,
where f" denotes the value of a generic fieldat timestem, and f1 denotes the filtered
value of the field at that time. This filter is used to modify the solution at timerster
the solution at timestep+ 1 has been computed. (Also see Haltiner and Williams [6].
The temperature and salinity equations use the same filter, but with weighting coefficie
(1/64, 31/32, 1/64).

In the tests of the revised splitting described in Section 4, a different strategy is us
The baroclinic equations are solved with a filter having coefficients (0.01, 0.98, 0.0
On the other hand, the solution of the barotropic equations involves the following tirr
averaging of barotropic variables. With the parameters used in these particular computat
the barotropic equations are solved explicitly with 40 barotropic timesteps per barocli
timestep. We continue this computation out to step 50 and compute time-averaggsdf
p,n over steps 30 through 50. These time-averages are communicated to the baroc
equations and are used as the starting point for the next barotropic integration.

This averaging is used for the following reason. The leapfrog scheme is an example of
midpoint rule for numerical integration. When applied to the generic equation= F(t),
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this rule implies

thia
Ultnr) = Ulto_s) + / F(o)de

th-1

~ U(tn—l) + 2At F(tn),

which is a reasonable formula wheénis slowly varying. However, whetf is rapidly
varying, the sampled valuE (t,) is sensitive to small phase shifts i and in that case
it would be better to replack (t,) with a time average. The time-averaging employed i
Section 4 uses data from approximately one quarter of the integval fn.1].

4. NUMERICAL COMPUTATIONS

The preceding strategy was implemented in MICOM in order to compare the new
original splittings. For these computations, the model domain is a region of the north
equatorial Atlantic Ocean having northern and southern boundaries at latitudes app
mately 65 N and 27 S, respectively. This region of the Atlantic is embedded in a rectanc
lar region that is discretized in the horizontal with 128 grid intervals in both the east—w
and north—south directions, which gives a resolution of approximat@ha®the equator. A
masking operation is used to delete land masses from the computation. Solid-wall bour
conditions are imposed at the northern and southern boundaries.

Vertical discretization is accomplished by dividing the fluid into 16 layers. The upperm
layer represents the mixed layer; in this model the density of this layer can vary with time
horizontal position but not with vertical position. The other layers in the model have cons
density. The specific volume of the top layer is 0.9758§/gnat the initial time. The other
layers in the model have specific volumes 0.97530, 0.97472, 0.97423, 0.97382, 0.9
0.97320, 0.97297, 0.97278, 0.97262, 0.97248, 0.97236, 0.97226, 0.97218, 0.97212
0.97208.

In Section 3.1.1 it was mentioned that the intersection of layer interfaces with the bot
ofthe fluid domain can cause difficulties with implementill. This situation is illustrated
in Fig. 3 which shows a portion of the model domain consisting of the Caribbean Sea
the Gulf of Mexico. The figure contains a collection of integers, each of which is loca
at a mass point on the grid. For each point, the integer specifies the number of nor
fluid layers at that point at the initial time. The figure shows that the number of nonz
layers can change dramatically from one grid point to the next. This strong variatiol
bottom topography provides an illustration of the difficulties discussed in Section 3.1.1
numerical computations of the type described below, the bottom—up representatibh of
which is criticized in Section 3.1.1, yielded irregular behavior and an eventual blow
Details of the computational results with this representation are not given here. On
other hand, the top—down representatiorvdfl yielded reasonable results, as describe
below.

In these computations, the free surface elevation and horizontal velocity component
set to zero at the initial time. The temperature field and layer thicknesses are initialize
zonal (east—west) averages of climatological data. Evolution of the model through tirr
then determined by forcing from climatological values of winds, precipitation, evaporati
atmospheric moisture, atmospheric temperature, and solar radiation. Some of these
are specified at monthly intervals, and others are specified quarterly. These data se
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FIG. 3. lllustration of variable bottom topography. The figure shows a portion of the model domain consisti
of the Caribbean Sea and the Gulf of Mexico. The integers in the plot are located at mass points on the sy
grid. For each point, the integer indicates the number of nonzero fluid layers at that point at the initial time.

then interpolated with respect to time in order to provide forcing to the model. The seasc
cycle in the forcing produces a seasonal cycle in the computed solution.

In this set of computations the time step used for the baroclinic equations is 1.5/t 6or 1
day. The barotropic equations are solved explicitly by using the forward—backward metl
with 40 barotropic timesteps per baroclinic step. The numerical computations primal
include tests of the following versions of the model:

(@) A modified version of MICOM which incorporates the top—down formulation of th
revised splitting as described in Sections 3.1.2 and 3.2.

(b) The original, unmodified MICOM. In the forcing terruoV (pyn) in the barotropic
momentum equation, the parametgrwas chosen for convenience to be 13tgnduring
the development of that model.

(c) A modified version of MICOM that uses the original splitting as in (b), but with the
same time-smoothing scheme used for (a). A comparison of (a) and (b) is of consider:
interest, but it leaves open the question of how the different time-smoothing scheme
(a) and (b) might affect the results. A comparison of (a) and (c) isolates the effect of
splitting itself.

Computations were performed on a 32-node partition of a Connection Machine CN
Execution times for the revised model (a) were roughly 6% to 9% longer than for the origi
model (b). Part of the extra time is due to the vertical summations required to implem
VM. This cost is intrinsic to the method described here. The remainder of the extra ti
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is due to the additional computation of barotropic substeps as described in Section 2
This cost is a consequence of the time-averaging used in these particular tests.

Each version of the model was integrated from day 0 to day 3600. In this model 3600 ¢
areregarded as 10years, as each month is assumed to be 30 days long during the speci
of the forcing functions. Snapshots were made of various fields at day 3600 and at day
(9.5 years) from the output from versions (a), (b), and (c). These fields include sur
velocity, layer thicknesses, salinity, and mixed layer density. Snapshots of the same f
with different versions of the model are generally similar, although not identical.

Some examples are given in Figs. 4 and 5 which show the interfaces between fluid la
Figure 4 shows two meridional (north—south) cross sections that were produced witt
revised splitting for day 3600. Sections are shown at longitudes 4¥\and 36.30 W.
The horizontal coordinate is the latitude in degrees, with the northernmost latitude tc
left, and the vertical coordinate is the depth in meters. The shaded regions indicate th

merid.sec. 44.40w  year 10.00 (jan.15)
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FIG. 4. \Vertical, north—south cross sections at day 3600 of the solution computed with the revised split
as implemented in version (a) of the model. The horizontal coordinate is the latitude in degrees, and the ve
coordinate is the depth in meters. The shaded regions indicate the sea floor and land masses. The curve
interior of the fluid region show the interfaces between layers.
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FIG.5. Cross sections produced with the original splitting, as implemented in version (c).

floor and land masses. The layer interfaces are illustrated by the curves that are app
mately horizontal. The uppermost layer represents the mixed layer; this layer is relativ
thick in the northernmost regions, which is typical of wintertime conditions. Several of tl
interior layers outcrop into the mixed layer in the latitude range M@o 45 N, which

is approximately the location of the Gulf Stream. Figure 5 shows the corresponding cr
sections that were obtained with the original splitting, as implemented in version (c) of |
model. Figures 4 and 5 are generally very similar. As mentioned in Section 3.1, an is
encountered during the implementationzoM is the effect of interfaces intersecting the
bottom topography. Figure 4 does not indicate any problems in this regard, with the pre:
implementation.

As noted in Section 3.4.2, substantial time smoothing is needed in this model becaus
the computational mode that is allowed by the timestepping scheme that is used to solve
baroclinic equations. The computational mode is independent of the issue of barotroj
baroclinic splitting. It appears that the smoothing blurs the differences in stability betwe
the two splittings tested here, and this helps to account for the general similarity of
results obtained with versions (a), (b), and (c).
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However, the results are not identical, and some differences can be seen in some dia
tics of meridional mass flux that were taken at regular intervals throughout the computa
On a discrete set of latitudes, at each diagnostic time, the meridional mass transport in
layer was summed east—west in order to obtain a layer-by-layer measure of the net n
south transport. A vertical sum of these transports then gives the total meridional trans
as a function of latitude. The layer-by-layer transport can also be used to produce a m
ional streamfunction that illustrates the depth-dependent circulation. As discussed b
each of these diagnostics shows a sloshing pattern that is substantially reduced by usil
revised splitting in place of the original splitting.

During the integrations from day 0 to day 3600, the meridional mass transport
diagnosed at 15-day intervals. Versions (b) and (c) of the model, which use the orig
splitting, show considerable time variations in the net (vertically summed) transport. -
general nature and amplitude of the oscillations are similar in the two models. Similar re:
are also obtained with the original splitting, but with= 0.97297 cni/g. This is the value
of e inlayer 8, and itwas chosen in order to check the effect of the valugamf the behavior
of the original splitting. The computation for this case used the same time smoothing as
the revised splitting. In the 15-day samples described here, the oscillations obtained wit
revised splitting are generally much smaller than those obtained with the original splitt

This phenomenon was investigated more closely by integrating the system beyonc
3600 and taking diagnostics of the mass transport at each baroclinic time step. Verti
summed transports were then plotted as follows. For each diagnostic time, comput:
maximum and minimum of the transports for that time over all latitudes. Positive transj
is taken to be northward, and negative transportis southward. Due to the solid-wall boun
conditions at the northern and southern boundaries, the maximum is at least zero, ar
minimum is at most zero. Then plot the maximum as a function of time and the minimun
a function of time. If the model were at a steady state, the maximum and minimum wc
be identically zero. Deviations from zero indicate a net north—south movement of fluid

The top frame in Fig. 6 illustrates the net transport obtained with the revised splitting fr
day 3600 to day 3645. In this plot, the vertical coordinate is the mass transport in Sverd
(Sv), where 1 Sw= 10° m%/s. Over this time interval, the system displays an oscillation wit
a period of approximately 15 h (24 oscillations in 15 days). As seen below, the oscilla
is found mainly in a range of latitudes from approximately B6to 40° N. The periods of
inertial oscillations at latitudes 3&and 40 are approximately 20.9 and 18.7 h, respectivel
[4, 13]. The lower frame shows the net transport obtained with the original splitting,
implemented in version (c) of the model. In this case the oscillations are much larger
with the revised splitting, and they have a period of approximately 40 h. As seen later, ti
oscillations are more distributed with respect to latitude.

The question arises as to whether these oscillations are of physical origin or whether
represent the response of the system to forcing, resulting from numerical discretizz
errors. First of all, the large discrepancy between the two cases indicates that nume
effects must play a large role in the oscillations in at least one of these cases. Fu
information is given by an additional experiment in which the barotropic and baroclii
time steps were each cut in half, and the computations were restarted from day 2
For both the revised and original splittings, the sloshing patterns drifted away from tt
obtained with the original time steps. Figure 7 shows plots of the meridional transports f
day 3625 to day 3645. In the lower frame, the solid curve shows the transport produced
the original splitting and the original time steps, and the dashed figure shows the re
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FIG. 6. lllustration of north—south mass transports obtained with versions (a) and (c). In each graph, at €
time, the vertical coordinate of the upper curve is the maximum net north—south transport, where the maximu
taken over a discrete set of latitudes. The vertical coordinate of the lower curve is the minimum rate of transy
Positive rates correspond to northward transport, and negative rates correspond to southward transport. Ra
expressed in Sverdrups (Sv), where 1=S1f m®/s. The plots show transports from day 3600 through 3645.
Samples are taken at every baroclinic time step, with 16 steps per day.

obtained with the smaller time steps. The upper frame shows analogous results for
revised splitting; in this case both graphs are shown as solid curves for the sake of visibi
Inthe case of the original splitting, the oscillations appear to be well resolved with respec
time when the longer time step is used, yet reducing the time step produces major cha
in the results. This suggests strongly that the oscillations are largely a numerical artif
Using the revised splitting reduces the oscillations substantially. However, the discrepa
between the two curves plotted in the upper frame suggests that numerical effects may
a significant role in this case as well.

The preceding discussion has been concerned with the net lateral transport obtaine
summing over all layers, but the sloshing pattern can also be seen in the depth-deper
circulation. The top frame in Fig. 8 shows a meridional streamfunction obtained with t
revised splitting. As before, the mass transports have been summed zonally. In this |
the vertical coordinate is expressed in terms of fluid layers, insteadofd the horizontal
coordinate is the latitude, with the northernmost latitude of the right. The contour inter
is 1 Sv. The plot shows a time average over every baroclinic time step from day 3600 to
3615, with 16 steps per day. The lower frame in Fig. 8 displays the standard deviatior
this time series, plotted as a function of latitude and depth. In the lower frame the cont
interval is 0.2 Sv. The plot shows that the sloshing pattern varies with depth and is confi
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FIG. 7. Effects of the time steps on the north—south mass transport. In the lower frame, the solid cu
represent the maximum and minimum transports obtained with the original splitting and with the same time
used previously. The dashed curves show the transports obtained when the computation is restarted at de
and carried forward with the baroclinic and barotropic time steps equal to half those used for the solid c
Transports are shown from day 3625 to day 3645. The upper frame shows analogous results obtained w
revised splitting. In the upper frame, both plots are shown as solid curves for the sake of visibility.

mainly to the range of latitudes mentioned earlier, with a maximum standard deviatiol
roughly 0.8 Sv.

Figure 9 shows analogous results for the original splitting, as implemented in version
The lower frame shows a sloshing pattern in approximately the same location as the
obtained with the revised splitting, but the maximum standard deviation is approxima
1.4 Svinthe presentcase. There is another localized event centere@an@b a maximum
standard deviation of approximately 1.0 Sv. Standard deviations in the range 0.2 to 0.
are also seen throughout much of the model domain.

Additional diagnostics are given by the values of the residual forcing t€&@sdG* in
the vertically averaged barotropic momentum equations (2.3) and (2.5). In these equa
the residual terms represent the combined effects of quantities that are not represent
explicitformulas. In each case, the residual term is taken to be independent of time over
baroclinic time interval, and its magnitude gives a measure of the inexactness in the split
In the case of the original splitting, the tef®f includes the difference betweet oV (pgn)
and—V M. As noted at the end of Section 3.1.2, this difference involves quantities that v
on the fast barotropic time scale. Using the revised splitting has the effect of pulling
difference out of the residual term and including it in the quantities that are represel
with explicit formulas.
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Revised splitting, days 3600-3615
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FIG. 8. Depth-dependent circulation obtained with the revised splitting, as implemented in version (a). |
upper frame shows a meridional streamfunction obtained from an east—-west sum of north—south transports in
layer. The horizontal coordinate is latitude, and the vertical coordinate is the layer. The contour interval is 1
The plot shows a time average over every baroclinic time step from day 3600 to day 3615, with 16 steps per
The lower frame shows the standard deviation of this time series, plotted as a function of latitude and deptl
the lower frame the contour interval is 0.2 Sv.

Figure 10 shows values of the components of the residual at day 3600 at latitudd 87
each plot the horizontal coordinate is longitude, and the vertical coordinate has unfts cn
The upper left and upper right plots show the north—south and east—west compone
respectively, of the residu& that is produced with the revised splitting. The lower row
shows the components & that are produced by the original splitting, as implemented i
version (c). The plots indicate that the revised splitting produces much smaller residua

The dependence of the residuals on time is indicated in Fig. 11. The plots in the upper
show values of the north—south componenGdhat are obtained with the revised splitting
from day 3600 to day 3615 with 16 baroclinic time steps per day. The time series are ta
at positions 37N 63> W and 37 N 26° W. These positions are located, respectively, at th
southern edge of the Gulf Stream and in a relatively quiescent region of the eastern Atlal
Each plot shows a constant general trend plus perturbations that are seemingly randol
each graph, the solid curve represents data obtained with the model as described previc
and the dotted curve shows data obtained when the code was modified so as to con
G in double precision with all other aspects of the model unchanged. The computat
of G involves the summation of numbers of varying sign which nearly cancel, and t
discrepancies between the solid and dotted curves suggest the effects of finite preci
However, finite precision does not give a complete description of the rapid perturbations
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FIG. 9. Depth-dependent circulation obtained with the original splitting, as implemented in version (c). -
format is the same as in Fig. 8. The lower frame indicates a greater amount of north—south sloshing than i
with the revised splitting.

such perturbations are not found in the corresponding plots for the original splitting, wt
are discussed below. In the upper left frame the average of the valGeis approximately

6 x 10°%, and in the upper right frame the average is approximatetyl6-. A plot
analogous to Fig. 6 (not shown here) shows that the double-precision computatidrasf
very little effect on the maximal and minimal meridional mass transport.

The lower frames in Fig. 11 show the north—south componen@*dhat are obtained
with the original splitting at the same locations. These plots show smooth oscillations \
a period of approximately one day. However, there is no daily cycle in the forcing functi
that drive the model, so the oscillations@t are apparently an artifact of the algorithm.
The vertical scale in the lower frames is the same as for the upper frames, but the o
is shifted off-scale because of the greater magnitudes of the quantities plotted in the |
frames. These quantities are almost two orders of magnitude larger than the averages
values seen in the upper frames.

One could develop an exact formula for the residual term, as it is the mass-weig
vertical average of the terms that are not represented explicitly in the barotropic momet
equation. There is then a corresponding error when the residual is taken to be indepe
of time on each baroclinic time interval. This error can be regarded as a forcing func
that drives the barotropic velocity fieldaway from its correct values, and this forcing may
be a mechanism that generates the sloshing phenomenon discussed above. The qu.
G (or G*) andu also appear in the baroclinic momentum equation, so the residual
affect the depth-dependent circulation as well. With the revised splitting, the magnitud
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FIG. 10. Components of the residual forcing term in the barotropic momentum equation. The magnitude
this term gives a measure of the inexactness in the splitting. The values shown here are taken at lahtatd37
3600 and are expressed as functions of longitude. The graphs in the upper row of plots show the north—sout
east-west components, respectively, of the resi@uhht is obtained with the revised splitting. The graphs in the
lower row show the components Gf that are obtained with the original splitting, as implemented in version (c)

the residual is greatly reduced, and it appears that this is at least partly responsible fol
reduction in the lateral sloshing that is seen with the revised splitting.

5. SUMMARY AND CONCLUSIONS

One of the purposes of this paper is to describe an implementation of the revised split
that is applicable to an isopycnic ocean circulation model with strongly varying bottc
topography. A significant task is to develop a formulationVd¥ that does not include
any terms that contain discontinuities that are not already intrinsic to the problem. Si
discontinuities can generate spurious gravity waves that interfere with the computed solu
and perhaps even cause an ultimate failure in the computation.

A second goal of this work is to test this implementation in the ocean model for whi
the earlier splitting in [1] was originally developed. In the tests described here, the revi:
splitting substantially reduces a numerically induced sloshing pattern that is generate
the original splitting. The phenomenon appears related to a residual term that appea
the momentum equations and gives a measure of the accuracy of the splitting.

In linearized model problems, the revised splitting has much better stability propert
than the original splitting. This suggests that the revised splitting might make it possible
run the model using less time smoothing than with the original splitting. However, this w
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FIG.11. Time variation of the north—south component of the residual term. The graphs in the upper row s
values ofG obtained with the revised splitting, and the graphs in the lower row show val@@saiftained with
the original splitting. The vertical ranges in these frames are the same, but the origin is shifted off-scale il
lower two frames due to the greater magnitudes of the quantities plotted there. In the upper row of plots, the
curves represent values that are obtained whéncomputed in single precision, and the dotted curves illustra
the results whes® is computed in double precision with all other aspects of the model unchanged.

not the case in these particular tests. One factor may be that, at least in the linearized st
the original splitting contains substantial dissipation in some modes, even while thel
instability in other modes. Another factor is that the model tested here uses a nume
method for the baroclinic equations which admits a sawtooth computational mode
can be particularly stimulated by the implementation of the mixed layer in that moc
This mode must be suppressed, regardless of how the barotropic—baroclinic splittir
done. These remarks suggest the further development of numerical methods, althougt
investigations are beyond the scope of the present paper.

The computations described here use a grid that does not give high resolution of bour
currents or of eddies that are shed from ocean currents. An examination of the ef

of the revised splitting on the modeling of these phenomena is another issue for ful
investigation.
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