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The motions seen in numerical models of ocean circulation typically include
rapidly moving external gravity waves, which are essentially two-dimensional, and
a variety of other motions which are much slower and generally three-dimensional.
In a number of ocean models, the computational problems resulting from the mul-
tiple time scales are addressed by splitting the fast and slow dynamics into separate
subproblems that are solved by different techniques. The present paper addresses the
practical implementation of such a splitting for the case of isopycnic ocean mod-
eling, in which the vertical coordinate is density or some other related quantity.
During the implementation, a major task is to develop formulas suitable for usage
with rapidly varying bottom topography. Compared to an earlier splitting, the present
splitting has improved stability properties when analyzed in a simple linearized set-
ting. When tested in the same model for which the earlier splitting was developed,
the revised splitting substantially reduces a numerically induced sloshing pattern that
is seen in the model. This phenomenon appears to be related to a residual term that
appears in the momentum equations. In some examples, the residual is one to two
orders of magnitude smaller in the case of the revised splitting.c© 1999 Academic Press
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1. INTRODUCTION

Numerical models of ocean circulation typically admit motions varying on a wide range
of time scales. The motions include rapidly moving external gravity waves, whose dynamics
are similar to those found in the two-dimensional shallow-water equations that describe the
motions of a hydrostatic fluid of constant density. The remaining motions, such as currents
and interval gravity waves, have velocities that can be at least two orders of magnitude
smaller. In order to deal with the computational difficulties imposed by the disparity in
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time scales, several ocean circulation models (e.g., [1, 3, 10, 14]) model the fast motions
with a two-dimensional barotropic system of equations and the remaining slow motions
with a three-dimensional baroclinic system. The baroclinic system is solved explicitly with
a long time step that is appropriate for resolving the slow motions, while the barotropic
system is solved by separate techniques. A more extensive literature survey is given in
the introduction to [7]. The present paper addresses the splitting process in the context of
isopycnal coordinates, for which the vertical coordinate is density or some other related
quantity. In this type of model, a vertical discretization divides the fluid into layers that are
approximately immiscible, so water masses are tracked automatically due to the choice of
coordinate system. Other advantages of isopycnal coordinates are discussed in [1, 7].

Perhaps the first barotropic–baroclinic splitting for isopycnal models was the one devel-
oped by Bleck and Smith [1]. Higdon and Bennett [7] analyzed this splitting for the case of
a simple linearized model having a level bottom and two fluid layers, and they found that
the method in [1] can yield unstable computational algorithms due to inexactness in the
splitting. The equations that model the slow motions actually admit some energy moving
on the fast scale, so the Courant–Friedrichs–Lewy condition is violated for those equations.
Sources of inexactness include the decompositions of the velocity and pressure fields and
the derivation of the barotropic momentum equation. The latter is a prognostic equation
for the vertical average of the horizontal velocity, and in this equation the pressure-forcing
term is equivalent to the one from the shallow water equations. Higdon and de Szoeke [8]
subsequently found that the pressure term is the main source of instability. In an isopycnal
model, the horizontal pressure forcing is provided by the gradient of the Montgomery po-
tential M = αp+ gz. If the pressure term in the barotropic system in [1] is replaced by the
vertical average of∇M , then the instability is essentially eliminated in the linearized set-
ting analyzed in [7, 8]. Additional improvements are given by some time stepping schemes
developed by Hallberg [5]. Essentially, in the splitting developed in [1], the barotropic mo-
mentum equation neglects the variations in density over the depth of the fluid, whereas the
splitting in [8] incorporates the vertical structure more explicitly.

The present paper extends the preceding work, as follows. One goal is to develop a
method for implementing the splitting of [8] in a nonlinear isopycnic model with strongly
varying bottom topography. A second goal is to test this method when applied to the Miami
Isopycnic Coordinate Ocean Model (MICOM) [1, 2], which is the model for which the
splitting in [1] was originally developed.

When pursuing the first goal, a particular concern is developing a suitable representation
of ∇M , the vertical average of∇M . Two methods for representing this average are discus-
sed in Section 3. In one approach, which is termed a bottom–up method, one first determines
Mb, the Montgomery potential in the bottom layer. One then represents∇M in all other
layers in terms of∇Mb prior to the vertical averaging. However, at locations where layer
interfaces intersect the bottom of the fluid domain, representations of∇M based on this
approach can include terms that contain discontinuities that are not already intrinsic to the
problem. This point is discussed in Section 3.1.1. These discontinuities act as sources of
velocity convergence which can generate spurious gravity waves in the computed solution.
In some numerical experiments using such an approach, erratic behavior appeared quickly,
followed by an ultimate blowup that apparently resulted from nonlinear interactions in
the system. An alternate approach, which is termed a top–down method, is developed in
Sections 3.1.2 and 3.2. With this method the idea is to representM1, the Montgomery
potential in the top layer, in terms of changes in layer thicknesses and then represent∇M
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in all other layers in terms of∇M1. The quantity∇M1 is continuous as long as the free
surface is smooth, and with this approach the final representation of∇M does not contain
discontinuous terms of the type encountered with the bottom–up approach.

In the following discussions of splittings, the term “original splitting” will refer to the
splitting developed by Bleck and Smith [1], and the term “revised splitting” will refer to
the splitting developed by Higdon and de Szoeke [8]. In the context of a nonlinear model
with varying bottom topography, the revised splitting is implemented using the top–down
method mentioned above, as opposed to the bottom–up method. However, in the discussion
of linearized stability given in Section 2.3, this distinction is immaterial, due to the simplicity
of the case considered there. The concept of top–down versus bottom–up also does not apply
to the original splitting in [1], as it does not employ a vertical average of the Montgomery
gradient.

The above splittings were compared in numerical computations involving a regional
configuration of MICOM. The spatial resolution used in these particular tests is adequate
for showing some of the main features of oceanic circulation, but it is not fine enough to give
high resolution of boundary currents or to resolve the eddies that are shed from currents. In
these experiments, the revised and original splittings produced similar results, in the sense
that snapshots of various flow fields yielded results that are similar, although not identical.
However, the original splitting produced a substantial sloshing pattern that appears to be a
numerical artifact, instead of a realistic physical phenomenon. The sloshing can be seen in
the net lateral transport of fluid and in the depth-dependent circulation. The sloshing was
reduced substantially when the revised splitting was used. It was initially anticipated that the
improved stability of the revised splitting would make it possible to run the model with less
time smoothing than with the original splitting. Time smoothing was originally introduced
into that model in order to suppress the computational mode that is allowed by the leapfrog
scheme that is used to solve the baroclinic equations. However, the effect of this mode is
sufficiently strong for reasons related to the implementation of the mixed layer that it did
not appear possible to run the revised splitting with substantially reduced smoothing in the
present series of tests.

An outline of the paper is the following. Section 2 sketches the revised and original
splittings, and Section 3 describes a method for implementing the revised splitting. The
results of the numerical experiments are described in Section 4. A summary and some
conclusions are given in Section 5.

2. OUTLINE OF THE SPLITTINGS

This section describes the revised splitting that will be implemented and tested in later
sections. An outline of the earlier splitting of Bleck and Smith [1] is also given here.

2.1. Summary of the Splitting Process

The following discussion is based on the primitive equations as applied to a vertically
discrete, layered model. Assume that the fluid consists ofR layers with constant specific
volumesα1, . . . , αR, with index 1 referring to the uppermost layer and indexR referring
to the bottom layer. (The specific volume is the reciprocal of density.) Letpr (x, y, t) de-
note the pressure at the top of layerr ; the pressure at the free surface is assumed to be
p1 = 0. The elevation and pressure at the bottom of the fluid will be denoted byzb(x, y) and
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pb(x, y, t) = pR+1(x, y, t), respectively. Let1pr = pr +1 − pr denote the pressure differ-
ence across layerr , and let1αr = αr − αr +1 denote the increment inα across the interface
at the bottom of layerr . Let Mr (x, y, t) = αr p+ gz denote the Montgomery potential
in layer r ; a calculation involving the hydrostatic condition∂p/∂z= −α−1g shows that
M is independent of depth in a layer for whichα is independent of depth. Finally, let
ur (x, y, t) = (ur , vr ) denote the horizontal velocity in layerr . A simplified version of the
primitive equations in then

∂ur

∂t
+ (ur · ∇)ur + f k × ur = −∇Mr (2.1a)

Mr = Mr +1 + pr +11αr (2.1b)

∂1pr

∂t
+ ∇ · (ur 1pr ) = 0. (2.1c)

(Also see [1, 7].) Here,∇ = (∂/∂x, ∂/∂y), and f k × ur denotes the Coriolis terms (− f vr ,
f ur ).

The jump condition (2.1b) can be derived by observing that in the quantityM = αp+ gz,
α is discontinuous at an interface, whereasp andzare continuous. Equation (2.1c) describes
the conservation of mass, asg−11pr is the mass per unit horizontal area in layerr . A realistic
ocean model would also incorporate physical effects such as thermodynamics, viscosity,
surface forcing, and mixing between layers, but the system (2.1) is sufficient for illustrating
the essential ideas behind a barotropic–baroclinic time splitting.

For the momentum equation in the barotropic system, we use a vertical average of (2.1a).
Define a mass-weighted, vertically averaged velocity by

ū(x, y, t) =
R∑

r =1

1pr

pb
ur . (2.2)

The quantityg−1 pbū is the net rate of horizontal mass transport, and for a linearized problem
the formula (2.2) approximates the projection of the velocity field onto the external mode
[7]. The vertical average of (2.1a) can be written in the form

∂ū
∂t

+ f k × ū = −∇M + G, (2.3)

where∇M is defined in analogy to (2.2). The residual termG(x, y, t) represents the net
effect of those quantities whose vertical averages are not represented explicitly in (2.3). In
the present simplified case,G consists of the vertical average of the nonlinear terms and a
term involving the time derivatives of the weight coefficients1pr /pb. In a realistic ocean
model,G would also include such quantities as stress and viscosity. The implementation of
G is discussed below.

A baroclinic momentum equation can be obtained by subtracting (2.3) from (2.1a) to
obtain a prognostic equation for the baroclinic velocityu′

r = ur − ū. A comparison with
(2.2) shows thatu′ has mass-weighted vertical average zero.

For a decomposition of the pressure field, we use a splitting that was introduced by
Bleck and Smith [1]. Letp′

b(x, y) denote the pressure at the bottom of the fluid when the
system is in some reference state, such as an initial state or static state. For any(x, y, t)
let η(x, y, t) denote the relative perturbation in bottom pressure from that state, so that
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pb(x, y, t) = (1+ η)p′
b. For the sake of usage in Section 3.1, also assumeM1 = gztop is

constant in the reference state. Given the pressure fieldp and the preceding definition of
η, define a depth-dependent quantityp′ so thatp= (1 + η)p′ throughout the fluid. The
pressure increments across each layer then satisfy

1pr (x, y, t) = (1 + η(x, y, t))1p′
r (x, y, t). (2.4)

The quantityη is intended to represent the effects of external gravity waves, andp′ is
expected to vary only on a slow time scale. Typically|η| ¿ 1. The decomposition (2.4) then
induces a splitting of the mass equation (2.1c); see [1] or [7].

The decomposition (2.4) is based on the idea that an external wave causes all fluid layers
to thicken or thin by approximately the same proportion. Such a statement is not exact.
The decompositionur = u′

r + ū of the velocity field is also inexact, to a similar degree.
However, the analysis of Higdon and de Szoeke [8] indicates that these errors do not have
a significant impact on the stability of the coupled barotropic–baroclinic algorithm.

The barotropic momentum equation of Bleck and Smith [1] has the form

∂ū
∂t

+ f k × ū = −α0∇(p′
bη) + G∗, (2.5)

whereα0 is a reference value of specific volume. In [1], the residual term is denoted
by ū∗

t instead ofG∗. The quantityp′
bη is the perturbation in bottom pressure from the

reference state. For the case of a hydrostatic fluid of constant density,p′
bη is also the

pressure perturbation induced by changes in the elevation of the free surface. The term
−α0∇(p′

bη) is thus equivalent to the pressure forcing that appears in the shallow water
equations for a hydrostatic fluid of constant density 1/α0.

With the barotropic momentum equations (2.3) and (2.5), the residual termsG andG∗

can be implemented as follows. (Also see [1, 8].) Suppose that the solution is to be advanced
from timetn to timetn+1 = tn + 1t , where1t is the (long) baroclinic timestep. First, advance
the baroclinic momentum equation with the residual term deleted. The condition thatu′ has
vertical mean zero is then used to adjustu′ and obtain the residual. The computedG (or
G∗) is transferred to the barotropic momentum equation, where it serves as a forcing term
when the barotropic equations are solved on the time interval [tn, tn+1]. In [1] and in the
computations described in Section 4, the barotropic equations are solved explicitly with
short substeps. In this computation, the termG (or G∗) can vary with(x, y) but is treated
as constant int for tn < t < tn+1.

In the barotropic momentum equation (2.5), the pressure forcing term neglects the vertical
variations of density within the fluid, whereas the alternative equation (2.3) incorporates
the vertical structure explicitly. In the case of (2.3), the residual termG represents the net
effect of various quantities discussed earlier. In the case of (2.5), the residual term contains
these effects, plus the difference betweenα0∇(p′

bη) and∇M . An explicit representation
of the latter is developed in Section 3.1, and from that representation it can be seen that
α0∇(p′

bη) −∇M includes terms varying on the fast barotropic time scale. Using−∇M in
place of−α0∇(p′

bη) has the effect of pulling this difference out of the residual and treating
it with an explicit formula. In some computational examples discussed in Section 4, this
step reduces the size of the residual by one to two orders of magnitude.
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2.2. Stability

The effect of replacing−α0∇(p′
bη) with −∇M can also be seen in a linear stability

analysis. Higdon and Bennett [7] analyzed the stability of the splitting of Bleck and Smith [1]
for the special case of a linearized system with one horizontal dimension, two layers, and
flat bottom topography. Higdon and de Szoeke [8] subsequently analyzed the stability of
the revised splitting in the same setting and also for the case of two horizontal dimensions.
In [7] the parameterα0 was taken to be the value ofα in the lower layer, as this choice
simplified some formulas in the analysis. However, in the current version of MICOM, which
is discussed in Section 4, the value ofα0 is chosen to be 1 cm3/g for convenience. This
value is greater than all of the values ofα that are used in the layers in that model. Because
of the discrepancy between the analysis and the model, we briefly revisit the analysis and
test the dependence of stability on the value ofα0.

In the analysis in [7, 8], it is assumed that the system is discretized with respect to space by
using second-order centered finite differences on a staggered grid. The barotropic equations
are solved exactly with respect tot in order that time discretization errors for those equations
do not mask the effects of the splitting or the baroclinic timestepping. In order to analyze
stability, we perform a Fourier transform with respect tox and examine the evolution of the
system through time. Equivalently, consider special solutions of the formλneikxq, whereλ
is a complex scalar,n is the time index,k is a real wavenumber, andq is a vector. In general,
λ andq depend onk. Because of periodicity, one can assume−π ≤ k1x ≤ π , where1x is
the space step. An algorithm would be stable if, for each wavenumber,|λ| ≤ 1 for all λ and
if linear independence enables all solutions to be written as linear combinations of solutions
of the formλneikxq.

For the sake of brevity, we do not give the details of the analysis, but instead show plots
of |λ| versusk1x for a sample set of model parameters. For these plots it is assumed that
(α1 − α2)/α2 = 0.004, whereα1 andα2 are the specific volumes of the upper and lower
layers, respectively. It is also assumed that the pressure difference across the upper layer is
one-quarter the bottom pressure. The baroclinic timestep1t is chosen so that the baroclinic
Courant number isc11t/1x = 0.4, wherec1 is the internal wave speed. The leap frog
method is used to discretize the baroclinic equations with respect tot . As shown in [8], the
calculation ofλ can be reduced to an eigenvalue problem having six nonzero eigenvalues.

In Fig. 1, the upper graph shows a plot of|λ| versusk1x for the splitting of Bleck and
Smith, withα0 = α2. For this plot, values ofk1x were sampled in increments ofπ/2000.
The absolute values of all eigenvalues are shown in the plot, so multiple curves are present.
For mostk there existsλ for which |λ| > 1, so the method is unstable in the present setting.

The lower frame in Fig. 1 shows plots of|λ| for the caseα0 = α1, which is the value of
α in the upper layer. The instability remains, although the maximum value of|λ| is slightly
smaller. One difference with the preceding case is that there is a stronger prevalence of
modes for which|λ| < 1; for those particular modes, the algorithm is dissipative. Some
additional plots, not shown here, indicate that this pattern persists asα0 is increased to
values greater than those actually found in the fluid. Asα0 increases, the maximum value
of |λ| decreases gradually but remains greater than 1. The minimum values drop further
below 1, which indicates greater dissipation in some modes.

Figure 2 shows a plot of|λ| for the revised splitting. The model parameters are the same
as in Fig. 1. In the calculation leading to this plot, the baroclinic quantities appearing in∇M
are interpolated linearly with respect tot between consecutive baroclinic time levels. With
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FIG. 1. Plots of|λ| versusk1x for the original splitting developed in [1]. In this splitting, the pressure gradient
term−α0∇(p′

bη) is used in the barotropic momentum equation. The present analysis considers a linearized system
with two fluid layers and one horizontal dimension. In the top frame, it is assumed thatα0 is equal to the value of
α in the lower layer; for the bottom frame,α0 is the value ofα in the upper layer. Model parameters are specified
in the text.

the revised splitting, the eigenvalues have absolute value exactly equal to 1, except for a few
spikes defined on some extremely narrow intervals. The spikes can be eliminated by using a
time stepping scheme of Hallberg [5], which employs a prediction step and a correction step
for both the barotropic and baroclinic equations. In computational experiments, it has not

FIG. 2. Plot of |λ| versusk1x for the revised splitting implemented in the present paper. In this case, the
pressure forcing term in the barotropic momentum equation is−∇M .
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been evident that the spikes have a significant effect on the computation, given the effects
of viscosity and other factors that are present in an ocean circulation model.

3. IMPLEMENTATION OF THE REVISED SPLITTING

In this section we describe some aspects of implementing the splitting of [8] in a non-
linear model with variable bottom topography. One of the main steps is to express∇M in
terms of the prognostic variables in the system.

3.1. Representation of∇M in the Horizontally Continuous Case

The basic approach taken here is to representM1, the Montgomery potential in the top
layer, in terms of changes in layer thicknesses. The interface condition (2.1b) then yields
M in all other layers, and a representation for∇M can be obtained.

In the following discussion, it is assumed that all fluid layers exist at all horizontal
positions in the ocean. However, the interfaces between layers may intersect the bottom or
top boundaries of the fluid, so some of the layers can have (essentially) zero thickness in
some regions. This technique of massless layers is used, for example, by Blecket al. [1, 2]
and Oberhuber [12] in isopycnic ocean models and by Hsu and Arakawa [9] in an isentropic
model of the atmosphere.

3.1.1. Some difficulties related to∇M. Before giving the derivation of∇M sketched
above, it would be useful to discuss another approach that in some respects might seem
more natural. At the bottom of the fluid, the Montgomery potential satisfies the boundary
conditionMb = αb pb + gzb which is easily evaluated once the layer thicknesses are known.
The interface condition can then be used to relateM in all other layers toMb. A correspond-
ing representation of∇M would then involve∇Mb. The calculation of the latter can be
facilitated by using the pressure splittingp= (1+η)p′ to obtain∇Mb = ∇M ′

b + ∇(αb p′
bη),

whereM ′
b = αb p′

b + gzb denotes the Montgomery potential in the bottom layer at the refer-
ence state that is used to define the pressure splitting. The quantityαb p′

bη is several orders
of magnitude smaller thanαb p′

b, so separating this term from the remainder ofMb can yield
a more accurate calculation of the effect of its gradient. In addition,∇M ′

b is independent of
time and need not be updated during the computation.

The preceding approach was used to obtain the representation of∇M given in Eq. (2.12)
of Higdon and de Szoeke [8]. This representation was adequate for the numerical compu-
tations described in that paper, which assumed level bottom topography. However, in later
computations involving highly irregular bottom topography, this representation produced
erratic behavior and an ultimate blowup. Following are some observations that may help to
explain the irregular behavior and motivate the alternate approach to∇M that is developed
in the present paper.

For the moment, consider a two-layer fluid bounded below by topography that varies
linearly and suppose that the reference state is a stationary state for which the free surface
and fluid interface are level. Also assume that the free surface is located atz= 0. At this
state, the Montgomery potential in the upper layer isM ′

1 = α1 p′
1 + gztop = gztop = 0, and

the Montgomery potential in the lower layer isM ′
b = M ′

1 − p′
21α = −p′

21α. In a region
where the lower layer has positive thickness,p′

2 is constant, and∇M ′
b = 0. On the other

hand, in a region where the lower layer has zero thickness,p′
2 varies linearly, and∇M ′

b is
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a nonzero constant. The quantity∇M ′
b then has a jump discontinuity at any point where

the interface intersects the bottom topography. A similar analysis shows that analogous
conclusions can be reached for a multilayered fluid at any point where a smooth interface
intersects bottom topography at a nontangential angle. This situation is a consequence of
using massless layers at the bottom of the fluid.

However,∇M is itself continuous, assuming that the free surface and bottom topography
are described by continuously differentiable functions and that the top of each layer is
continuously differentiable on any region where the layer has positive thickness. To see
this, observe that these hypotheses, together with the relationMr = gztop −∑r

j =2 pj 1α j −1,
imply that∇Mr is continuous in layerr , except perhaps for jump discontinuities at locations
where the top of layerr intersects the bottom topography. However, in the definition of∇M
the quantity∇Mr is multiplied by the weighting coefficient1pr /pb = 1p′

r /p′
b, which tends

to zero at intersection points. The product of these quantities is continuous. The quantity
∇M is thus continuous, although it could have discontinuous first derivatives.

Now suppose that one is using a representation of∇M in which ∇M ′
b appears as a

separate term. Taken in isolation, this term would act as a forcing term on the barotropic
flow, and the discontinuities in this forcing would provide localized sources of velocity
convergence which could generate spurious gravity waves in the solution. However, since
∇M is continuous, the discontinuities in∇M ′

b must be cancelled by jumps of opposite sign
appearing in the remaining terms in∇M , and the spurious wave are not actually generated.
This observation depends on an exact cancellation of discontinuities appearing in different
terms. If these terms are then approximated by finite differences, this cancellation may not
necessarily occur. This appears to be the source of the erratic behavior in some numerical ex-
periments involving some implementations of the representation of∇M derived in [8]. The
ultimate blowup may have been due to nonlinear interactions involving the spurious waves.

In the preceding discussion, it was assumed that the top of each layer is smooth on any
region where the layer has positive thickness. However, the top of a layer is not smooth at a
location where it intersects the free surface at a nontangential angle. In that case, an analysis
similar to the above shows that∇M could be discontinuous. However, this situation has
not caused noticeable difficulties in numerical experiments. In this case, the discontinuity
in ∇M appears to be a dynamic configuration to which the system can adjust. For example,
consider a two-layer fluid having a level free surface atz= 0, and assume that the thickness
of the upper layer is zero forx < x0 and proportional tox − x0 for x > x0. In this case,
M1 = M2 = ∇M = 0 for x < x0. On the other hand, ifx > x0 then M1 = 0, ∂M2/∂x < 0,
and thex-component of−∇M is positive. Since−∇M provides forcing to∂ū/∂t , the
discontinuity in−∇M provides a source of barotropic fluid divergence atx = x0. More
generally, if the intersection of the interface with the free surface is smoothed slightly,
then−∇M undergoes a rapid transition nearx = x0, and again a source of barotropic fluid
divergence is obtained. Such a source induces a drop in the free surface elevation which
serves to moderate the divergence; in this sense, the system adjusts to the jump in∇M . On
the other hand, a discontinuity in∇M ′

b represents a static forcing that acts forever, and in
the experiments cited above the system appeared unable to adjust to this kind of forcing in
a reasonable manner.

It should be noted that there are practical limitations to how smoothly∇M can vary
when the system is discretized in the horizontal in the presence of strongly varying bottom
topography. In that case, at a fixed time, there can be different numbers of nonzero layers
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at different grid points, and the bottom topography can then be visualized as a stairstep
pattern. For example, in the model configuration used in Section 4, the number of nonzero
layers can jump by several units between adjacent grid points, as illustrated in Fig. 3. In
such situations,∇M could contain a jump when the number of nonzero layers changes,
due to a change in the number and character of the terms being averaged. For example,
consider a two-layer model that admits one nonzero layer at all grid points for whichx < x0

and two nonzero layers at all points wherex > x0. Suppose that the fluid has a level free
surface atz= 0, the interface between layers varies linearly forx > x0, and the thickness
of the lower layer approaches a positive value asx → x+

0 . In this caseM1 = 0 for all x,
and M2 varies linearly forx > x0. It follows that∇M is zero forx < x0 but has nonzero
values immediately to the right ofx0. More generally, a jump in∇M is possible if there
aren1 nonzero layers forx < x0 andn2 nonzero layers forx > x0, with n2 − n1 > 1; if, for
some configuration of the system,∇M does not have a jump, then another configuration
with a jump can be constructed by varying the shapes of the tops of layersn1 + 1, . . . , n2

for x slightly greater thanx0. The precise behavior of∇M at x = x0 would depend on the
structure of the grid and the method of discretizing∇M . In any case, abrupt variations of
∇M are possible in neighborhoods of points where the number of nonzero layers changes.
This situation appears intrinsic to the problem and not an artifact of any particular formula
for ∇M .

With the formulation of∇M that is discussed above and used in [8], one would have to
balance carefully the discretization of different terms in order to avoid jumps that are greater
than those that are intrinsic to the problem. On the other hand, the difficulty involving∇M ′

b

is related to the massless layers at the bottom of the fluid, and an alternative is to abandon
the use of such layers. However, this would entail difficulties related to tracking the moving
boundaries of nonzero layers.

The approach taken in the present paper is to sidestep these difficulties by formulating∇M
differently. Essentially, the preceding method is a bottom–up approach which relates the
Montgomery potential in each layer to the Montgomery potential in the lowest layer. Instead,
we use here a top–down approach that begins with a representation of the Montgomery
potential in the top layer.

3.1.2. A formula for∇M. The Montgomery potential in the top layer isM1(x, y, t) =
gztop(x, y, t), whereztop is the perturbation in the elevation of the free surface relative to the
mean elevationz= 0. Let1zr (x, y, t) denote the thickness of layerr , and let1zr,ref(x, y)

denote the thickness of layerr when the system is at the reference state used to define
the pressure splittingp= (1 + η)p′. In Section 2.1 it was assumed that, in this state, the
free surface is level. It follows thatM1 = g

∑R
r =1(1zr − 1zr,ref). The hydrostatic condition

∂p/∂z= −α−1g then yields

M1 =
R∑

r =1

αr (1pr − 1p′
r,ref),

where1p′
r,ref(x, y) denotes the pressure difference across layerr at the reference state.

Now insert the pressure decomposition (2.4) to obtain

M1(x, y, t) = ᾱ p′
bη +

R∑
r =1

αr (1p′
r − 1p′

r,ref), (3.1a)
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where

ᾱ(x, y, t) =
R∑

r =1

αr
1p′

r

p′
b

(3.1b)

denotes the mass-weighted vertical average ofα. In (3.1a), the quantityp′
bη varies on the

fast time scale, and the other quantities vary on the slow time scale. The summation in
(3.1a) represents some effects of internal waves; the terms in this sum cancel partially, due
to varying signs in the vertical direction.

The Montgomery potential in an arbitrary layerr can then be written

Mr = M1 − p21α1 − · · · − pr 1αr −1

= M1 − (1 + η)Nr ,

where N1 = 0 and Nr = p′
21α1 + · · · + p′

r 1αr −1 for r > 1. The quantityN resembles
Montgomery potential, except that it increases downward with increments of the form
p′1α. The vertical average of∇M is then

∇M =
R∑

r =1

1p′
r

p′
b

∇Mr

= ∇M1 −
R∑

r =1

1p′
r

p′
b

∇
[

p′
b(1 + η)

Nr

p′
b

]
, (3.2)

where∇M1 is calculated from (3.1). The quantityNr /p′
b has units ofα and satisfies

0< Nr /p′
b < 1α, where1α = α1 − αR denotes the variation inα over the total depth of

the fluid. The quantityp′
b(1 + η) is equal to the total bottom pressurepb.

The barotropic momentum equation of Bleck and Smith [1] uses the gradient term
−α0∇(p′

bη), whereα0 is a reference value ofα. A comparison with (3.1) and (3.2) shows
that the difference between−α0∇(p′

bη) and−∇M consists of the gradient of the summa-
tion term in (3.1a) plus terms of order1α. This difference includes terms that vary on the
fast barotropic time scale.

3.2. Representation of∇M in the Horizontally Discrete Case

For definiteness, assume that the horizontal discretization of the governing equations is
based on the C-grid of Arakawa [6, 11]. This discretization is used in the model tested in
Section 4. The quantitiesM , p, η, and N are defined at “mass points” in the centers of
grid cells, and the values of normal components of velocity are defined at the centers of
edges of grid cells. Letu andv denote the components of velocity with respect tox and
y, respectively. If the center of a grid cell is located with integer indices(i, j ), then denote
theu-points associated with that cell with indices(i, j ) and(i + 1, j ). Similarly, denote the
v-points with indices(i, j ) and(i, j + 1).

The following discussion considers centered differences ofMr with respect tox that
are taken to be approximations to∂Mr /∂x at u-points. A similar discussion applies to
differences with respect toy that represent values atv-points.

When computing vertical averages of discretizations of∂Mr /∂x, it is necessary to use
weight coefficients1p′

r /p′
b evaluated atu-points. For a fixed value of time, let1p′

r (u, i, j )
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denote an approximation to1p′
r at theu-point with indices(i, j ). The calculation of this

quantity is discussed in Section 3.3. The quantityp′
b(u, i, j ) =∑R

r =11p′
r (u, i, j ) is an

approximation top′
b at u-point (i, j ), and the weight coefficient1p′

r (u, i, j )/p′
b(u, i, j )

can be used when calculating vertical averages at that point. However, such coefficients are
not used when calculating ¯α in the expression (3.1) forM1. All of the quantities in (3.1) are
located at mass points, and in the calculation of ¯α at mass point(i, j ) it suffices to use the
values of1p′

r and p′
b that are already defined at that point.

In analogy to (3.2), a discretization of thex-component of∇M is given by

(∇M)x ≈ M1(i, j ) − M1(i − 1, j )

1x

−
R∑

r =1

1p′
r (u, i, j )

p′
b(u, i, j )

 pb(i, j ) Nr
p′

b
(i, j ) − pb(i − 1, j ) Nr

p′
b
(i − 1, j )

1x


= M1(i, j ) − M1(i − 1, j )

1x
− A(u, i, j )pb(i, j ) − B(u, i, j )pb(i − 1, j )

1x
, (3.3)

where

A(u, i, j ) =
R∑

r =1

1p′
r (u, i, j )

p′
b(u, i, j )

Nr (i, j )

p′
b(i, j )

(3.4)

B(u, i, j ) =
R∑

r =1

1p′
r (u, i, j )

p′
b(u, i, j )

Nr (i − 1, j )

p′
b(i − 1, j )

,

M1 is given by the expression in (3.1), andpb = p′
b(1+ η). The quantitiesA(u, i, j ) and

B(u, i, j ) vary on the slow time scale, andpb varies on the fast time scale.
If the barotropic equations are solved explicitly by using short substeps of a baroclinic

time interval [tn, tn+1], then the quantities in∇M that vary on the slow time scale can be
interpolated int between timestn andtn+1. The barotropic quantities are updated at each
short timestep.

3.3. Weighting Coefficients

The calculation of∇M requires values of the weighting coefficients1p′
r /p′

b at velocity
points. However, these coefficients are naturally defined at mass points, so an interpolation
between mass points is required. During this interpolation, a problem that must be avoided
is the creation of false pressure gradients in regions of varying bottom topography. For
an example of this situation, suppose that the system is at a static state characterized by
a horizontal free surface, horizontal interfaces between layers,η = 0, and zero forcing.
Consider au-point with indices(i, j ), and letp′

r (i, j ) andp′
r (i −1, j ) denote the baroclinic

pressures at the top of layerr at the adjacent mass points. Also suppose that the top of layer
r rests on the sea floor at mass point(i − 1, j ) but not at mass point(i, j ), and the top of that
layer is higher at mass point(i − 1, j ) than it is at mass point(i, j ). This situation would
occur if the top of layerr intersects bottom topography between these mass points, and layer
r is then continued with zero layer thickness for decreasingx. The interface condition (2.1b),
together withM1 = 0, then impliesMr (i − 1, j ) > Mr (i, j ). If the weighting coefficient
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1p′
r (u, i, j )/p′

b(u, i, j ) is nonzero, then the vertical average of the discrete∂M/∂x contains
a nonzero contribution from layerr . Since this vertical average provides forcing toū, it
is possible that the system will start moving, even though it should remain stationary.
The scheme for calculating weighting coefficients must therefore yield1p′

r (u, i, j ) = 0
in this situation. A simple average of1p′

r (i − 1, j ) and1p′
r (i, j ) would not have this

property.
Some weighting coefficients are computed in MICOM in order to calculate vertical

averages of velocities. These coefficients satisfy the requirements stated above, so this
weighting strategy is given here as an example. Let

p′
r (u, i, j ) = min

(
p′

b(i − 1, j ), p′
b(i, j ),

p′
r (i − 1, j ) + p′

r (i, j )

2

)
.

This quantity provides an approximation to the interface pressure at theu-point (i, j ).
Then let

1p′
r (u, i, j ) = p′

r +1(u, i, j ) − p′
r (u, i, j )

to obtain a pressure increment across layerr . The bottom pressure is then given by

p′
b(u, i, j ) =

R∑
r =1

1p′
r (u, i, j ) = min(p′

b(i − 1, j ), p′
b(i, j )).

In regions that are located away from the bottom of the fluid,1p′
r (u, i, j ) is simply the

average of1p′
r (i, j ) and1p′

r (i −1, j ). However, in the situation described in the preceding
paragraph,p′

r (u, i, j ) = p′
b(i − 1, j ) and p′

r +1(u, i, j ) = p′
b(i − 1, j ), so1p′

r (u, i, j ) = 0
as desired. A comparison with (3.4) and (3.5) shows that∇M = 0 for this case, so false
pressure gradients are avoided.

3.4. Other Issues of Implementation

The following are some other aspects of implementing the splitting that is tested in
Section 4. These issues are mostly specific to MICOM, although some of the motivations
for time smoothing apply more generally.

3.4.1. Pressure forcing in the upper layer.In MICOM the uppermost layer repre-
sents the mixed layer. In the physical ocean the mixed layer is vertically homogeneous
due to mixing caused by wind forcing and thermal convection. In the model, the den-
sity of the uppermost layer is independent of depth but can vary with(x, y, t). Because
of this fact, the horizontal pressure forcing in layer 1 is∇M1 − p∇α1, instead of∇M1.
To derive this result, observe that the hydrostatic condition∂p/∂z= −α−1g, together with
the assumption of zero atmospheric pressure, implies that the pressure in layer 1 is
p(x, y, z, t) = α−1

1 (x, y, t)g(ztop(x, y, t) − z) = α−1
1 (M1 − gz). The horizontal pressure

forcing term is thenα1∇ p= ∇M1 − α−1
1 (M1 − gz)∇α1 = ∇M1 − p∇α1.

In the computations described in Section 4, this quantity is approximated by∇M1 − p′∇α1

for convenience. The quantityp′ varies with depth, so an intermediate value must be chosen
when implementing this term. In addition, values ofp′ are needed at velocity points, so
an interpolation between adjacent mass points is needed. These steps are accomplished by
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using half an harmonic mean. For example, in the approximation to∂M1/∂x − p′∂α1/∂x
atu-point(i, j ), the value ofp′ is taken to bep′

2(i −1, j )p′
2(i, j )/(p′

2(i −1, j ) + p′
2(i, j )).

Here,p′
2(i − 1, j ) and p′

2(i, j ) are the baroclinic pressures at the bottom of layer 1 at the
mass points adjacent tou-point (i, j ).

Strictly speaking, the above issues should also be taken into account when constructing
the vertically averaged barotropic momentum equation. That is,∇M should be replaced
by ∇M − (1p′

1/p′
b)p′∇α1. However, in some numerical experiments this modification

did not appear to produce significant changes in the computed results. For the sake of
simplicity, −∇M is used as the forcing term for the barotropic momentum equation in the
computations described in Section 4. The forcing for the baroclinic momentum equations
is thus−(∇M1 − p′∇α1 − ∇M) for layer 1 and−(∇Mr − ∇M) for all other layers.

3.4.2. Time smoothing.In general, a smoothing operation may be needed when imple-
menting the barotropic–baroclinic splitting described above. As noted earlier, in a discrete
model∇M can contain jumps due to abrupt changes in the number of nonzero layers over
which the average is taken, and these jumps could generate spurious gravity waves. One
would like to suppress such waves, and some time smoothing can accomplish this. It should
also be noted that the idea of a barotropic–baroclinic splitting is based on the decomposi-
tion of the solution into external and internal modes. Strictly speaking, this decomposition
applies to linearized models with level bottom topography for which analytical solutions
can be constructed by the method of separation of variables. (See [7].) However, in a re-
alistic ocean model a barotropic–baroclinic splitting is fundamentally inexact. This leaves
the possibility of erratic behavior that would need to be removed from the computation.

In MICOM, there is an additional reason for time smoothing that is independent of the
issues discussed elsewhere in this paper. The baroclinic equations are presently solved
with the leapfrog time stepping scheme, which admits a computational mode consisting of
grid-scale oscillations with respect to time. In addition, the treatment of the mixed layer in
this model allows for sudden detrainment of large amounts of water from the mixed layer
into the interior layers. This detrainment provides an impulsive force that can stimulate the
computational mode. If left unchecked, these oscillations can ultimately cause a failure in
the computation, so they need to be removed by a filtering device.

In standard MICOM, this filter has the form̄f n = 0.125 f̄ n−1 + 0.75 f n + 0.125f n+1,
where f n denotes the value of a generic fieldf at timestepn, and f̄ n denotes the filtered
value of the field at that time. This filter is used to modify the solution at time stepn after
the solution at timestepn + 1 has been computed. (Also see Haltiner and Williams [6].)
The temperature and salinity equations use the same filter, but with weighting coefficients
(1/64, 31/32, 1/64).

In the tests of the revised splitting described in Section 4, a different strategy is used.
The baroclinic equations are solved with a filter having coefficients (0.01, 0.98, 0.01).
On the other hand, the solution of the barotropic equations involves the following time-
averaging of barotropic variables. With the parameters used in these particular computations,
the barotropic equations are solved explicitly with 40 barotropic timesteps per baroclinic
timestep. We continue this computation out to step 50 and compute time-averages ofū and
p′

bη over steps 30 through 50. These time-averages are communicated to the baroclinic
equations and are used as the starting point for the next barotropic integration.

This averaging is used for the following reason. The leapfrog scheme is an example of the
midpoint rule for numerical integration. When applied to the generic equationu′(t) = F(t),
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this rule implies

u(tn+1) = u(tn−1) +
∫ tn+1

tn−1

F(τ ) dτ

≈ u(tn−1) + 21t F(tn),

which is a reasonable formula whenF is slowly varying. However, whenF is rapidly
varying, the sampled valueF(tn) is sensitive to small phase shifts inF , and in that case
it would be better to replaceF(tn) with a time average. The time-averaging employed in
Section 4 uses data from approximately one quarter of the interval [tn−1, tn+1].

4. NUMERICAL COMPUTATIONS

The preceding strategy was implemented in MICOM in order to compare the new and
original splittings. For these computations, the model domain is a region of the north and
equatorial Atlantic Ocean having northern and southern boundaries at latitudes approxi-
mately 65◦ N and 27◦ S, respectively. This region of the Atlantic is embedded in a rectangu-
lar region that is discretized in the horizontal with 128 grid intervals in both the east–west
and north–south directions, which gives a resolution of approximately 0.9◦ at the equator. A
masking operation is used to delete land masses from the computation. Solid-wall boundary
conditions are imposed at the northern and southern boundaries.

Vertical discretization is accomplished by dividing the fluid into 16 layers. The uppermost
layer represents the mixed layer; in this model the density of this layer can vary with time and
horizontal position but not with vertical position. The other layers in the model have constant
density. The specific volume of the top layer is 0.97589 cm3/g at the initial time. The other
layers in the model have specific volumes 0.97530, 0.97472, 0.97423, 0.97382, 0.97348,
0.97320, 0.97297, 0.97278, 0.97262, 0.97248, 0.97236, 0.97226, 0.97218, 0.97212, and
0.97208.

In Section 3.1.1 it was mentioned that the intersection of layer interfaces with the bottom
of the fluid domain can cause difficulties with implementing∇M . This situation is illustrated
in Fig. 3 which shows a portion of the model domain consisting of the Caribbean Sea and
the Gulf of Mexico. The figure contains a collection of integers, each of which is located
at a mass point on the grid. For each point, the integer specifies the number of nonzero
fluid layers at that point at the initial time. The figure shows that the number of nonzero
layers can change dramatically from one grid point to the next. This strong variation in
bottom topography provides an illustration of the difficulties discussed in Section 3.1.1. In
numerical computations of the type described below, the bottom–up representation of∇M ,
which is criticized in Section 3.1.1, yielded irregular behavior and an eventual blowup.
Details of the computational results with this representation are not given here. On the
other hand, the top–down representation of∇M yielded reasonable results, as described
below.

In these computations, the free surface elevation and horizontal velocity components are
set to zero at the initial time. The temperature field and layer thicknesses are initialized to
zonal (east–west) averages of climatological data. Evolution of the model through time is
then determined by forcing from climatological values of winds, precipitation, evaporation,
atmospheric moisture, atmospheric temperature, and solar radiation. Some of these fields
are specified at monthly intervals, and others are specified quarterly. These data sets are
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FIG. 3. Illustration of variable bottom topography. The figure shows a portion of the model domain consisting
of the Caribbean Sea and the Gulf of Mexico. The integers in the plot are located at mass points on the spatial
grid. For each point, the integer indicates the number of nonzero fluid layers at that point at the initial time.

then interpolated with respect to time in order to provide forcing to the model. The seasonal
cycle in the forcing produces a seasonal cycle in the computed solution.

In this set of computations the time step used for the baroclinic equations is 1.5 h, or 1/16
day. The barotropic equations are solved explicitly by using the forward–backward method
with 40 barotropic timesteps per baroclinic step. The numerical computations primarily
include tests of the following versions of the model:

(a) A modified version of MICOM which incorporates the top–down formulation of the
revised splitting as described in Sections 3.1.2 and 3.2.

(b) The original, unmodified MICOM. In the forcing term−α0∇(p′
bη) in the barotropic

momentum equation, the parameterα0 was chosen for convenience to be 1 cm3/g during
the development of that model.

(c) A modified version of MICOM that uses the original splitting as in (b), but with the
same time-smoothing scheme used for (a). A comparison of (a) and (b) is of considerable
interest, but it leaves open the question of how the different time-smoothing schemes in
(a) and (b) might affect the results. A comparison of (a) and (c) isolates the effect of the
splitting itself.

Computations were performed on a 32-node partition of a Connection Machine CM5.
Execution times for the revised model (a) were roughly 6% to 9% longer than for the original
model (b). Part of the extra time is due to the vertical summations required to implement
∇M . This cost is intrinsic to the method described here. The remainder of the extra time
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is due to the additional computation of barotropic substeps as described in Section 3.4.2.
This cost is a consequence of the time-averaging used in these particular tests.

Each version of the model was integrated from day 0 to day 3600. In this model 3600 days
are regarded as 10 years, as each month is assumed to be 30 days long during the specification
of the forcing functions. Snapshots were made of various fields at day 3600 and at day 3420
(9.5 years) from the output from versions (a), (b), and (c). These fields include surface
velocity, layer thicknesses, salinity, and mixed layer density. Snapshots of the same fields
with different versions of the model are generally similar, although not identical.

Some examples are given in Figs. 4 and 5 which show the interfaces between fluid layers.
Figure 4 shows two meridional (north–south) cross sections that were produced with the
revised splitting for day 3600. Sections are shown at longitudes 44.40◦ W and 36.30◦ W.
The horizontal coordinate is the latitude in degrees, with the northernmost latitude to the
left, and the vertical coordinate is the depth in meters. The shaded regions indicate the sea

FIG. 4. Vertical, north–south cross sections at day 3600 of the solution computed with the revised splitting,
as implemented in version (a) of the model. The horizontal coordinate is the latitude in degrees, and the vertical
coordinate is the depth in meters. The shaded regions indicate the sea floor and land masses. The curves in the
interior of the fluid region show the interfaces between layers.
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FIG. 5. Cross sections produced with the original splitting, as implemented in version (c).

floor and land masses. The layer interfaces are illustrated by the curves that are approxi-
mately horizontal. The uppermost layer represents the mixed layer; this layer is relatively
thick in the northernmost regions, which is typical of wintertime conditions. Several of the
interior layers outcrop into the mixed layer in the latitude range 40◦ N to 45◦ N, which
is approximately the location of the Gulf Stream. Figure 5 shows the corresponding cross
sections that were obtained with the original splitting, as implemented in version (c) of the
model. Figures 4 and 5 are generally very similar. As mentioned in Section 3.1, an issue
encountered during the implementation of∇M is the effect of interfaces intersecting the
bottom topography. Figure 4 does not indicate any problems in this regard, with the present
implementation.

As noted in Section 3.4.2, substantial time smoothing is needed in this model because of
the computational mode that is allowed by the timestepping scheme that is used to solve the
baroclinic equations. The computational mode is independent of the issue of barotropic–
baroclinic splitting. It appears that the smoothing blurs the differences in stability between
the two splittings tested here, and this helps to account for the general similarity of the
results obtained with versions (a), (b), and (c).
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However, the results are not identical, and some differences can be seen in some diagnos-
tics of meridional mass flux that were taken at regular intervals throughout the computation.
On a discrete set of latitudes, at each diagnostic time, the meridional mass transport in each
layer was summed east–west in order to obtain a layer-by-layer measure of the net north–
south transport. A vertical sum of these transports then gives the total meridional transport
as a function of latitude. The layer-by-layer transport can also be used to produce a merid-
ional streamfunction that illustrates the depth-dependent circulation. As discussed below,
each of these diagnostics shows a sloshing pattern that is substantially reduced by using the
revised splitting in place of the original splitting.

During the integrations from day 0 to day 3600, the meridional mass transport was
diagnosed at 15-day intervals. Versions (b) and (c) of the model, which use the original
splitting, show considerable time variations in the net (vertically summed) transport. The
general nature and amplitude of the oscillations are similar in the two models. Similar results
are also obtained with the original splitting, but withα0 = 0.97297 cm3/g. This is the value
of α in layer 8, and it was chosen in order to check the effect of the value ofα0 on the behavior
of the original splitting. The computation for this case used the same time smoothing as with
the revised splitting. In the 15-day samples described here, the oscillations obtained with the
revised splitting are generally much smaller than those obtained with the original splitting.

This phenomenon was investigated more closely by integrating the system beyond day
3600 and taking diagnostics of the mass transport at each baroclinic time step. Vertically
summed transports were then plotted as follows. For each diagnostic time, compute the
maximum and minimum of the transports for that time over all latitudes. Positive transport
is taken to be northward, and negative transport is southward. Due to the solid-wall boundary
conditions at the northern and southern boundaries, the maximum is at least zero, and the
minimum is at most zero. Then plot the maximum as a function of time and the minimum as
a function of time. If the model were at a steady state, the maximum and minimum would
be identically zero. Deviations from zero indicate a net north–south movement of fluid.

The top frame in Fig. 6 illustrates the net transport obtained with the revised splitting from
day 3600 to day 3645. In this plot, the vertical coordinate is the mass transport in Sverdrups
(Sv), where 1 Sv= 106 m3/s. Over this time interval, the system displays an oscillation with
a period of approximately 15 h (24 oscillations in 15 days). As seen below, the oscillation
is found mainly in a range of latitudes from approximately 35◦ N to 40◦ N. The periods of
inertial oscillations at latitudes 35◦ and 40◦ are approximately 20.9 and 18.7 h, respectively
[4, 13]. The lower frame shows the net transport obtained with the original splitting, as
implemented in version (c) of the model. In this case the oscillations are much larger than
with the revised splitting, and they have a period of approximately 40 h. As seen later, these
oscillations are more distributed with respect to latitude.

The question arises as to whether these oscillations are of physical origin or whether they
represent the response of the system to forcing, resulting from numerical discretization
errors. First of all, the large discrepancy between the two cases indicates that numerical
effects must play a large role in the oscillations in at least one of these cases. Further
information is given by an additional experiment in which the barotropic and baroclinic
time steps were each cut in half, and the computations were restarted from day 3600.
For both the revised and original splittings, the sloshing patterns drifted away from those
obtained with the original time steps. Figure 7 shows plots of the meridional transports from
day 3625 to day 3645. In the lower frame, the solid curve shows the transport produced with
the original splitting and the original time steps, and the dashed figure shows the results
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FIG. 6. Illustration of north–south mass transports obtained with versions (a) and (c). In each graph, at each
time, the vertical coordinate of the upper curve is the maximum net north–south transport, where the maximum is
taken over a discrete set of latitudes. The vertical coordinate of the lower curve is the minimum rate of transport.
Positive rates correspond to northward transport, and negative rates correspond to southward transport. Rates are
expressed in Sverdrups (Sv), where 1 Sv= 106 m3/s. The plots show transports from day 3600 through 3645.
Samples are taken at every baroclinic time step, with 16 steps per day.

obtained with the smaller time steps. The upper frame shows analogous results for the
revised splitting; in this case both graphs are shown as solid curves for the sake of visibility.
In the case of the original splitting, the oscillations appear to be well resolved with respect to
time when the longer time step is used, yet reducing the time step produces major changes
in the results. This suggests strongly that the oscillations are largely a numerical artifact.
Using the revised splitting reduces the oscillations substantially. However, the discrepancy
between the two curves plotted in the upper frame suggests that numerical effects may play
a significant role in this case as well.

The preceding discussion has been concerned with the net lateral transport obtained by
summing over all layers, but the sloshing pattern can also be seen in the depth-dependent
circulation. The top frame in Fig. 8 shows a meridional streamfunction obtained with the
revised splitting. As before, the mass transports have been summed zonally. In this plot,
the vertical coordinate is expressed in terms of fluid layers, instead ofz, and the horizontal
coordinate is the latitude, with the northernmost latitude of the right. The contour interval
is 1 Sv. The plot shows a time average over every baroclinic time step from day 3600 to day
3615, with 16 steps per day. The lower frame in Fig. 8 displays the standard deviation of
this time series, plotted as a function of latitude and depth. In the lower frame the contour
interval is 0.2 Sv. The plot shows that the sloshing pattern varies with depth and is confined



            

BAROTROPIC–BAROCLINIC TIME SPLITTING 599

FIG. 7. Effects of the time steps on the north–south mass transport. In the lower frame, the solid curves
represent the maximum and minimum transports obtained with the original splitting and with the same time steps
used previously. The dashed curves show the transports obtained when the computation is restarted at day 3600
and carried forward with the baroclinic and barotropic time steps equal to half those used for the solid curve.
Transports are shown from day 3625 to day 3645. The upper frame shows analogous results obtained with the
revised splitting. In the upper frame, both plots are shown as solid curves for the sake of visibility.

mainly to the range of latitudes mentioned earlier, with a maximum standard deviation of
roughly 0.8 Sv.

Figure 9 shows analogous results for the original splitting, as implemented in version (c).
The lower frame shows a sloshing pattern in approximately the same location as the one
obtained with the revised splitting, but the maximum standard deviation is approximately
1.4 Sv in the present case. There is another localized event centered at 20◦ S, with a maximum
standard deviation of approximately 1.0 Sv. Standard deviations in the range 0.2 to 0.4 Sv
are also seen throughout much of the model domain.

Additional diagnostics are given by the values of the residual forcing termsG andG∗ in
the vertically averaged barotropic momentum equations (2.3) and (2.5). In these equations,
the residual terms represent the combined effects of quantities that are not represented by
explicit formulas. In each case, the residual term is taken to be independent of time over each
baroclinic time interval, and its magnitude gives a measure of the inexactness in the splitting.
In the case of the original splitting, the termG∗ includes the difference between−α0∇(p′

bη)

and−∇M . As noted at the end of Section 3.1.2, this difference involves quantities that vary
on the fast barotropic time scale. Using the revised splitting has the effect of pulling this
difference out of the residual term and including it in the quantities that are represented
with explicit formulas.
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FIG. 8. Depth-dependent circulation obtained with the revised splitting, as implemented in version (a). The
upper frame shows a meridional streamfunction obtained from an east–west sum of north–south transports in each
layer. The horizontal coordinate is latitude, and the vertical coordinate is the layer. The contour interval is 1 Sv.
The plot shows a time average over every baroclinic time step from day 3600 to day 3615, with 16 steps per day.
The lower frame shows the standard deviation of this time series, plotted as a function of latitude and depth. In
the lower frame the contour interval is 0.2 Sv.

Figure 10 shows values of the components of the residual at day 3600 at latitude 37◦ N. In
each plot the horizontal coordinate is longitude, and the vertical coordinate has units cm/s2.
The upper left and upper right plots show the north–south and east–west components,
respectively, of the residualG that is produced with the revised splitting. The lower row
shows the components ofG∗ that are produced by the original splitting, as implemented in
version (c). The plots indicate that the revised splitting produces much smaller residuals.

The dependence of the residuals on time is indicated in Fig. 11. The plots in the upper row
show values of the north–south component ofG that are obtained with the revised splitting
from day 3600 to day 3615 with 16 baroclinic time steps per day. The time series are taken
at positions 37◦ N 63◦ W and 37◦ N 26◦ W. These positions are located, respectively, at the
southern edge of the Gulf Stream and in a relatively quiescent region of the eastern Atlantic.
Each plot shows a constant general trend plus perturbations that are seemingly random. In
each graph, the solid curve represents data obtained with the model as described previously,
and the dotted curve shows data obtained when the code was modified so as to compute
G in double precision with all other aspects of the model unchanged. The computation
of G involves the summation of numbers of varying sign which nearly cancel, and the
discrepancies between the solid and dotted curves suggest the effects of finite precision.
However, finite precision does not give a complete description of the rapid perturbations, as
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FIG. 9. Depth-dependent circulation obtained with the original splitting, as implemented in version (c). The
format is the same as in Fig. 8. The lower frame indicates a greater amount of north–south sloshing than is seen
with the revised splitting.

such perturbations are not found in the corresponding plots for the original splitting, which
are discussed below. In the upper left frame the average of the values ofG is approximately
6× 10−6, and in the upper right frame the average is approximately 5× 10−6. A plot
analogous to Fig. 6 (not shown here) shows that the double-precision computation ofG has
very little effect on the maximal and minimal meridional mass transport.

The lower frames in Fig. 11 show the north–south components ofG∗ that are obtained
with the original splitting at the same locations. These plots show smooth oscillations with
a period of approximately one day. However, there is no daily cycle in the forcing functions
that drive the model, so the oscillations inG∗ are apparently an artifact of the algorithm.
The vertical scale in the lower frames is the same as for the upper frames, but the origin
is shifted off-scale because of the greater magnitudes of the quantities plotted in the lower
frames. These quantities are almost two orders of magnitude larger than the averages of the
values seen in the upper frames.

One could develop an exact formula for the residual term, as it is the mass-weighted
vertical average of the terms that are not represented explicitly in the barotropic momentum
equation. There is then a corresponding error when the residual is taken to be independent
of time on each baroclinic time interval. This error can be regarded as a forcing function
that drives the barotropic velocity field̄u away from its correct values, and this forcing may
be a mechanism that generates the sloshing phenomenon discussed above. The quantities
G (or G∗) and ū also appear in the baroclinic momentum equation, so the residual can
affect the depth-dependent circulation as well. With the revised splitting, the magnitude of
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FIG. 10. Components of the residual forcing term in the barotropic momentum equation. The magnitude of
this term gives a measure of the inexactness in the splitting. The values shown here are taken at latitude 37◦ N at day
3600 and are expressed as functions of longitude. The graphs in the upper row of plots show the north–south and
east–west components, respectively, of the residualG that is obtained with the revised splitting. The graphs in the
lower row show the components ofG∗ that are obtained with the original splitting, as implemented in version (c).

the residual is greatly reduced, and it appears that this is at least partly responsible for the
reduction in the lateral sloshing that is seen with the revised splitting.

5. SUMMARY AND CONCLUSIONS

One of the purposes of this paper is to describe an implementation of the revised splitting
that is applicable to an isopycnic ocean circulation model with strongly varying bottom
topography. A significant task is to develop a formulation of∇M that does not include
any terms that contain discontinuities that are not already intrinsic to the problem. Such
discontinuities can generate spurious gravity waves that interfere with the computed solution
and perhaps even cause an ultimate failure in the computation.

A second goal of this work is to test this implementation in the ocean model for which
the earlier splitting in [1] was originally developed. In the tests described here, the revised
splitting substantially reduces a numerically induced sloshing pattern that is generated by
the original splitting. The phenomenon appears related to a residual term that appears in
the momentum equations and gives a measure of the accuracy of the splitting.

In linearized model problems, the revised splitting has much better stability properties
than the original splitting. This suggests that the revised splitting might make it possible to
run the model using less time smoothing than with the original splitting. However, this was
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FIG. 11. Time variation of the north–south component of the residual term. The graphs in the upper row show
values ofG obtained with the revised splitting, and the graphs in the lower row show values ofG∗ obtained with
the original splitting. The vertical ranges in these frames are the same, but the origin is shifted off-scale in the
lower two frames due to the greater magnitudes of the quantities plotted there. In the upper row of plots, the solid
curves represent values that are obtained whenG is computed in single precision, and the dotted curves illustrate
the results whenG is computed in double precision with all other aspects of the model unchanged.

not the case in these particular tests. One factor may be that, at least in the linearized setting,
the original splitting contains substantial dissipation in some modes, even while there is
instability in other modes. Another factor is that the model tested here uses a numerical
method for the baroclinic equations which admits a sawtooth computational mode that
can be particularly stimulated by the implementation of the mixed layer in that model.
This mode must be suppressed, regardless of how the barotropic–baroclinic splitting is
done. These remarks suggest the further development of numerical methods, although such
investigations are beyond the scope of the present paper.

The computations described here use a grid that does not give high resolution of boundary
currents or of eddies that are shed from ocean currents. An examination of the effects
of the revised splitting on the modeling of these phenomena is another issue for further
investigation.
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